加载中........
×

Radiology:胸片都能自动评价阴性阳性了?

2019-4-27 作者:shaosai   来源:MedSci原创 我要评论0
Tags: 胸片  神经网络  

本研究旨在评价卷积神经网络(CNNs)对胸片进行分类的价值。

本研究共纳入了216431例胸片检查及相关诊断报告。该数据用来训练CNN对胸片进行分类为正常和异常。利用标准二进制分类标准、详细误差分析对开发集大小、训练集大小和初始化策略和网络构架对最终结果的影响进行评价。

结果为,经过训练200000例图像后CNN的平均曲线下面积为0.96.该曲线下面积要优于观察者对2000例图像的诊断结果,但当与观察者诊断20000例结果相比时并无统计学差异。CNN输出结果优良,平均曲线下面积为0.98 (P < .005)。对于特别图像分析显示该模型能够可靠的评价胸部病变。

本研究表明,经过相当数量病例训练后的CNN能够对胸片进行阴性和阳性分类,这也许有助于对异常胸片进行自动分类。

原始出处:

Dunnmon JA, Yi D, Langlotz CP,et al.Assessment of Convolutional Neural Networks for Automated Classification of Chest Radiographs.Radiology.DOI:10.1148/radiol.2018181422

本文系梅斯医学(MedSci)原创编译整理,转载需授权!



小提示:78%用户已下载梅斯医学APP,更方便阅读和交流,请扫描二维码直接下载APP

所属期刊:RADIOLOGY 期刊论坛:进入期刊论坛
版权声明:本文系梅斯MedSci原创编译整理,未经本网站授权不得转载和使用。如需获取授权,请点击

只有APP中用户,且经认证才能发表评论!马上下载

web对话