J Hepatology: 自发性门体系统分流的总面积可以独立预测肝硬化的肝性脑病和死亡率

2020-02-22 不详 MedSci原创

自发性门体分流(SPSS)在肝硬化中经常发生。最近的数据表明,单个大SPSS的存在与并发症有关,尤其是明显的肝性脑病(oHE)。这项研究评估了总横截面SPSS面积(TSA)对肝硬化患者结局的影响。

背景
自发性门体分流(SPSS)在肝硬化中经常发生。最近的数据表明,单个大SPSS的存在与并发症有关,尤其是明显的肝性脑病(oHE)。这项研究评估了总横截面SPSS面积(TSA)对肝硬化患者结局的影响。

方法
在这项回顾性国际多中心研究中,研究人员对908名SPSS肝硬化患者的计算机断层扫描(CT)扫描评估了TSA。记录临床和实验室数据。测量每个检测到的SPSS半径并计算TSA。1年生存率是主要观察终点,急性失代偿(oHE,静脉曲张破裂出血,腹水)是次要终点。

结果
301名患者(169名男性)被纳入训练队列。所有患者中有30%表现为> 1 SPSS。研究人员确定将TSA临界值定为83 mm 2,以对小型或大型TSA(S- / L-TSA)患者进行分类。L-TSA患者表现出较高的MELD(11 VS 14)和更常见的oHE病史(12% VS 21%,p <0.05)。在随访期间,L-TSA患者发生了更多的oHE发生(33% VS 47%,p <0.05),并且一年生存率低于S-TSA(84% VS 69%,p <0.001)。多变量分析确定L-TSA(HR 1.66,1.02-2.70,p <0.05)是死亡率的独立预测因子。607名患者的独立多中心验证队列证实,L-TSA患者的1年生存率较低(77% VS 64%,p <0.001)和oHE发生率更高(35%vs. 49%,p <0.001)。

结论
该研究表明,TSA> 83mm 2会增加发生肝硬化的oHE风险和死亡率。

原始出处:

本文系梅斯医学(MedSci)原创编译整理,转载需授权!

相关资讯

SPSS分析实战-数据清洗

这是一篇基于实战的学习笔记 在这个到处都是数据的时代,很多岗位都应该学一点数据分析,不仅是学一个软件,而是要从中掌握数据分析的思维。 问卷调研仍然是广泛应用的数据获取方式,所以学习问卷调研的数据分析不过时。 数据分析只是手段,最重要的还是结合业务场景,懂业务才知道从哪里下手分析。 需要有统计学基本知识,每篇文章前面我会把涉及的统计学知识点列一下,尽量通俗易懂。

p for trend内涵与SPSS实现

p for trend主要是指随着某分组变量的递增或递减(需要注意的是,该分组变量需是有序多分类变量),其他变量是否存在某种趋势变化。如下表中,每日观看电视时长为有序多分类变量:小于1.5h,1.5~3.0h,3.0~4.5h,大于等于4.5h。研究者探讨了随着电视观看时长的增加,其他变量的变化情况。我们知道卡方检验中的“线性关联”可以提供随着分组变量的递增,某分类变量的趋势变化。但是,随着某分组

SPSS实战:回归中哑变量的设置和结果解读

在构建回归模型时,如果自变量X为连续性变量,回归系数β可以解释为:在其他自变量不变的条件下,X每改变一个单位,所引起的因变量Y的平均变化量;如果自变量X为二分类变量,例如是否饮酒(1=是,0=否),则回归系数β可以解释为:其他自变量不变的条件下,X=1(饮酒者)与X=0(不饮酒者)相比,所引起的因变量Y的平均变化量。 但是,当自变量X为多分类变量时,例如职业、学历、血型、疾病严重程度等等,此

SPSS实战:有序分类变量和二分类变量的趋势检验(Cochran-Armitage)

一、问题与数据 研究者想分析偏头痛药物的剂量与药物眩晕副作用是否存在线性关系。研究者从入院治疗偏头痛的病人中随机选择646名病人。这些病人服用五种剂量的药物并报告是否出现眩晕。 五种药物剂量分别是50mg、100mg、150mg、200mg和250mg,为有序分类变量,分别赋值为1-5,变量名为drug_dose。如果病人报告眩晕,则报告“yes”,否则报告“no”,为二分类变量,

SPSS教程:卡方拟合优度检验(详细版)

有小伙伴曾经提出过这样的疑问,从下图中SPSS菜单的两个入口进去,都是做卡方检验吗?两者有啥区别? 点击Analyze → Descriptive Statistics → Crosstabs 点击Analyze → Nonparametric Tests → Legacy Dialogs → Chi-square

SPSS教程:分层卡方检验(有图解)

提到卡方检验,相信很多小伙伴一定会觉得这还不简单,不就是率的比较嘛,只要是看到分类变量,就直接用卡方检验,拿SPSS两三下算出结果,得出P<0.05,然后心里还美美的。 分层分析是一种常用的控制混杂因素的方法,它将数据资料根据混杂因素进行分层,然后计算各层内的OR值: 如果层间OR值不一致,则说明分层因素可能存在混杂作用,需要分开报告OR值;如果层间OR值同质,则可以将OR值进行合并,从