This document provides updated tables for the Clinical and Laboratory Standards Institute antimicrobial susceptibility testing standards M02-A12, M07-A10, and M11-A8.

An informational supplement for global application developed through the Clinical and Laboratory Standards Institute consensus process.
Clinical and Laboratory Standards Institute
Setting the standard for quality in clinical laboratory testing around the world.

The Clinical and Laboratory Standards Institute (CLSI) is a not-for-profit membership organization that brings together the varied perspectives and expertise of the worldwide laboratory community for the advancement of a common cause: to foster excellence in laboratory medicine by developing and implementing clinical laboratory standards and guidelines that help laboratories fulfill their responsibilities with efficiency, effectiveness, and global applicability.

Consensus Process

Consensus—the substantial agreement by materially affected, competent, and interested parties—is core to the development of all CLSI documents. It does not always connote unanimous agreement, but does mean that the participants in the development of a consensus document have considered and resolved all relevant objections and accept the resulting agreement.

Commenting on Documents

CLSI documents undergo periodic evaluation and modification to keep pace with advancements in technologies, procedures, methods, and protocols affecting the laboratory or health care.

CLSI’s consensus process depends on experts who volunteer to serve as contributing authors and/or as participants in the reviewing and commenting process. At the end of each comment period, the committee that developed the document is obligated to review all comments, respond in writing to all substantive comments, and revise the draft document as appropriate.

Comments on published CLSI documents are equally essential, and may be submitted by anyone, at any time, on any document. All comments are addressed according to the consensus process by a committee of experts.

Appeals Process

If it is believed that an objection has not been adequately addressed, the process for appeals is documented in the CLSI Standards Development Policies and Process document.

All comments and responses submitted on draft and published documents are retained on file at CLSI and are available upon request.

Get Involved—Volunteer!

Do you use CLSI documents in your workplace? Do you see room for improvement? Would you like to get involved in the revision process? Or maybe you see a need to develop a new document for an emerging technology? CLSI wants to hear from you. We are always looking for volunteers. By donating your time and talents to improve the standards that affect your own work, you will play an active role in improving public health across the globe.

For further information on committee participation or to submit comments, contact CLSI.

Clinical and Laboratory Standards Institute
950 West Valley Road, Suite 2500
Wayne, PA 19087 USA
P: 610.688.0100
F: 610.688.0700
www.clsi.org
standard@clsi.org
Performance Standards for Antimicrobial Susceptibility Testing; Twenty-Fifth Informational Supplement

Abstract

The supplemental information presented in this document is intended for use with the antimicrobial susceptibility testing procedures published in the following Clinical and Laboratory Standards Institute (CLSI)–approved standards: M02-A12—Performance Standards for Antimicrobial Disk Susceptibility Tests; Approved Standard—Twelfth Edition; M07-A10—Methods for Dilution Antimicrobial Susceptibility Tests for Bacteria That Grow Aerobically; Approved Standard—Tenth Edition; and M11-A8—Methods for Antimicrobial Susceptibility Testing of Anaerobic Bacteria; Approved Standard—Eighth Edition. The standards contain information about both disk (M02) and dilution (M07 and M11) test procedures for aerobic and anaerobic bacteria.

Clinicians depend heavily on information from the clinical microbiology laboratory for treatment of their seriously ill patients. The clinical importance of antimicrobial susceptibility test results requires that these tests be performed under optimal conditions and that laboratories have the capability to provide results for the newest antimicrobial agents.

The tabular information presented here represents the most current information for drug selection, interpretation, and QC using the procedures standardized in the most current editions of M02, M07, and M11. Users should replace the tables published earlier with these new tables. (Changes in the tables since the previous edition appear in boldface type.)

The data in the interpretive tables in this supplement are valid only if the methodologies in M02-A12—Performance Standards for Antimicrobial Disk Susceptibility Tests; Approved Standard—Twelfth Edition; M07-A10—Methods for Dilution Antimicrobial Susceptibility Tests for Bacteria That Grow Aerobically; Approved Standard—Tenth Edition; and M11-A8—Methods for Antimicrobial Susceptibility Testing of Anaerobic Bacteria; Approved Standard—Eighth Edition are followed.
Performance Standards for Antimicrobial Susceptibility Testing; Twenty-Fifth Informational Supplement

Volume 35 Number 3

Jean B. Patel, PhD, D(ABMM)
Franklin R. Cockerill III, MD
Patricia A. Bradford, PhD
George M. Eliopoulos, MD
Janet A. Hindler, MCLS, MT(ASCP)
Stephen G. Jenkins, PhD, D(ABMM), F(AAM)
James S. Lewis II, PharmD
Brandi Limbago, PhD
Linda A. Miller, PhD
David P. Nicolau, PharmD, FCCP, FIDSA
Mair Powell, MD, FRCP, FRCPath
Jana M. Swenson, MMSc
Maria M. Traczewski, BS, MT(ASCP)
John D. Turnidge, MD
Melvin P. Weinstein, MD
Barbara L. Zimmer, PhD
Contents

Abstract ... 1

Committee Membership .. 5

Summary of Changes .. 13

Summary of CLSI Processes for Establishing Interpretive Criteria and Quality Control Ranges .. 16

CLSI Reference Methods vs Commercial Methods and CLSI vs US Food and Drug Administration Interpretive Criteria (Breakpoints) .. 17

CLSI Breakpoint Additions/Revisions Since 2010 ... 18

Subcommittee on Antimicrobial Susceptibility Testing Mission Statement .. 20

Instructions for Use of Tables ... 21

Table 1A. Suggested Groupings of Antimicrobial Agents With US Food and Drug Administration Clinical Indications That Should Be Considered for Routine Testing and Reporting on Nonfastidious Organisms by Clinical Microbiology Laboratories in the United States .. 32

Table 1B. Suggested Groupings of Antimicrobial Agents With US Food and Drug Administration Clinical Indications That Should Be Considered for Routine Testing and Reporting on Fastidious Organisms by Clinical Microbiology Laboratories in the United States .. 38

Table 1C. Suggested Groupings of Antimicrobial Agents With US Food and Drug Administration Clinical Indications That Should Be Considered for Routine Testing and Reporting on Anaerobic Organisms by Clinical Microbiology Laboratories in the United States .. 42

Tables 2A–2J. Zone Diameter and Minimal Inhibitory Concentration Interpretive Standards for:

2A. Enterobacteriaceae ... 44

2B-1. Pseudomonas aeruginosa ... 52

2B-2. Acinetobacter spp. ... 56

2B-3. Burkholderia cepacia complex ... 58

2B-4. Stenotrophomonas maltophilia ... 60

2B-5. Other Non-Enterobacteriaceae ... 62

2C. Staphylococcus spp. ... 64

2D. Enterococcus spp. ... 72

2E. Haemophilus influenzae and Haemophilus parainfluenzae ... 76

2F. Neisseria gonorrhoeae .. 80
Contents (Continued)

2G. *Streptococcus pneumoniae* ... 84

2H-1. *Streptococcus* spp. β-Hemolytic Group .. 90

2I. *Neisseria meningitidis* ... 98

2J-1. Anaerobes ... 102

2J-2. Epidemiological Cutoff Values for *Propionibacterium acnes* ... 106

Table 3A. Screening and Confirmatory Tests for Extended-Spectrum β-Lactamases in *Klebsiella pneumoniae*, *Klebsiella oxytoca*, *Escherichia coli*, and *Proteus mirabilis* ... 108

Introduction to Tables 3B and 3C. Tests for Carbapenemases in *Enterobacteriaceae*, *Pseudomonas aeruginosa*, and *Acinetobacter* spp. .. 112

Table 3B. The Modified Hodge Confirmatory Test for Suspected Carbapenemase Production in *Enterobacteriaceae*... 114

Table 3B-1. Modifications of Table 3B When Using Interpretive Criteria for Carbapenems Described in M100-S20 (January 2010)... 116

Table 3C. Carba NP Confirmatory Test for Suspected Carbapenemase Production in *Enterobacteriaceae*, *Pseudomonas aeruginosa*, and *Acinetobacter* spp. .. 120

Table 3C-1. Modifications of Table 3C When Using Minimal Inhibitory Concentration Interpretive Criteria for Carbapenems Described in M100-S20 (January 2010)... 123

Table 3D. Screening Test for Detection of β-Lactamase Production in *Staphylococcus* species 128

Table 3E. Screening Test for Detection of Methicillin Resistance (Oxacillin Resistance) in *Staphylococcus* species .. 132

Table 3F. Screening Test for Detection of Vancomycin Minimal Inhibitory Concentration ≥ 8 µg/mL in *Staphylococcus aureus* and *Enterococcus* species... 136

Table 3G. Screening Test for Detection of Inducible Clindamycin Resistance in *Staphylococcus* species, *Streptococcus pneumoniae*, and *Streptococcus* spp. β-Hemolytic Group ... 138

Table 3H. Screening Test for Detection of High-Level Mupirocin Resistance in *Staphylococcus aureus* ... 142

Table 3I. Screening Test for Detection of High-Level Aminoglycoside Resistance in *Enterococcus* species... 144
Contents (Continued)

Table 4A. Disk Diffusion: Quality Control Ranges for Nonfastidious Organisms (Unsupplemented Mueller-Hinton Medium) .. 146

Table 4B. Disk Diffusion: Quality Control Ranges for Fastidious Organisms .. 150

Table 4C. Disk Diffusion: Reference Guide to Quality Control Frequency .. 152

Table 4D. Disk Diffusion: Troubleshooting Guide .. 156

Table 5A. MIC: Quality Control Ranges for Nonfastidious Organisms (Unsupplemented Mueller-Hinton Medium [Cation-Adjusted if Broth]) .. 158

Table 5B. MIC: Quality Control Ranges for Fastidious Organisms (Broth Dilution Methods) .. 162

Table 5C. MIC: Quality Control Ranges for Neisseria gonorrhoeae (Agar Dilution Method) .. 166

Table 5D. MIC: Quality Control Ranges for Anaerobes (Agar Dilution Method) .. 168

Table 5E. MIC: Quality Control Ranges for Anaerobes (Broth Microdilution Method) .. 170

Table 5F. MIC: Reference Guide to Quality Control Frequency ... 172

Table 5G. MIC: Troubleshooting Guide .. 176

Table 6A. Solvents and Diluents for Preparation of Stock Solutions of Antimicrobial Agents .. 180

Table 6B. Preparation of Stock Solutions for Antimicrobial Agents Provided With Activity Expressed as Units ... 184

Table 6C. Preparation of Solutions and Media Containing Combinations of Antimicrobial Agent .. 186

Table 7A. Scheme for Preparing Dilutions of Antimicrobial Agents to Be Used in Agar Dilution Susceptibility Tests ... 188

Table 8A. Scheme for Preparing Dilutions of Antimicrobial Agents to Be Used in Broth Dilution Susceptibility Tests ... 190

Table 8B. Scheme for Preparing Dilutions of Water-Insoluble Antimicrobial Agents to Be Used in Broth Susceptibility Tests ... 192

Appendix A. Suggestions for Confirmation of Resistant (R), Intermediate (I), or Nonsusceptible (NS) Antimicrobial Susceptibility Test Results and Organism Identification ... 194

Appendix B. Intrinsic Resistance .. 198

Appendix C. Quality Control Strains for Antimicrobial Susceptibility Tests ... 204

Appendix D. Cumulative Antimicrobial Susceptibility Report for Anaerobic Organisms ... 208

Appendix E. Dosing Regimens Used to Establish Susceptible or Susceptible-Dose Dependent Interpretive Criteria ... 214
Contents (Continued)

Appendix F. Cefepime Breakpoint Change for Enterobacteriaceae and Introduction of the Susceptible-Dose Dependent Interpretive Category .. 216

Appendix G. Epidemiological Cutoff Values ... 220

Glossary I (Part 1). β-Lactams: Class and Subclass Designation and Generic Name ... 222

Glossary I (Part 2). Non-β-Lactams: Class and Subclass Designation and Generic Name .. 224

Glossary II. Abbreviations/Routes of Administration/Drug Class for Antimicrobial Agents Listed in M100-S25 .. 226

Glossary III. List of Identical Abbreviations Used for More Than One Antimicrobial Agent in US Diagnostic Products .. 229

The Quality Management System Approach ... 230

Related CLSI Reference Materials ... 231

The Clinical and Laboratory Standards Institute consensus process, which is the mechanism for moving a document through two or more levels of review by the health care community, is an ongoing process. Users should expect revised editions of any given document. Because rapid changes in technology may affect the procedures, methods, and protocols in a standard or guideline, users should replace outdated editions with the current editions of CLSI documents. Current editions are listed in the CLSI catalog and posted on our website at www.clsi.org. If you or your organization is not a member and would like to become one, and to request a copy of the catalog, contact us at: Telephone: +610.688.0100; Fax: +610.688.0700; E-mail: customerservice@clsi.org; Website: www.clsi.org.
Summary of Changes

This list includes the “major” changes in this document. Other minor or editorial changes were made to the general formatting and to some of the table footnotes and comments. Changes to the tables since the previous edition appear in boldface type.

Additions, Changes, and Deletions
The following are additions or changes unless otherwise noted as a “deletion.”

Instructions for Use of Tables

Noted that cefazolin is a surrogate agent in Test and Report Group U for *Enterobacteriaceae* and is not reported exclusively on urine isolates (p. 22).

Described the concept of epidemiological cutoff value (ECV), which is being introduced for *Propionibacterium acnes* and vancomycin (p. 25).

Clarified recommendations for the β-lactamase screen in coagulase-negative staphylococci (p. 28).

Tables 1A, 1B, 1C – Drugs Recommended for Testing and Reporting

Deleted from Tables 1A, 1B, and 1C – gatifloxacin, grepafloxacin, lomefloxacin, ticarcillin, trovafloxacin.

Enterobacteriaceae:
Added fosfomycin to Test Report Group U for testing and reporting of *E. coli* urinary tract isolates only (p. 32).

Enterococcus spp.:
Added fosfomycin to Test Report Group U with indications for use against *E. faecalis* urinary tract isolates only (p. 32).

Expanded recommendations for performing susceptibility testing on anaerobic isolates associated with polymicrobial infections (p. 43).

Tables 2A Through 2J-2 – Interpretive Criteria (Breakpoints)

Added instructions for following the manufacturer’s recommendations for QC when using a commercial test system.

Enterobacteriaceae (Table 2A):
Added azithromycin disk diffusion and MIC interpretive criteria for *Salmonella* Typhi (p. 49).

Added pefloxacin disk diffusion interpretive criteria for *Salmonella* spp. for use as a surrogate test for detecting nonsusceptibility to ciprofloxacin (p. 49).

Haemophilus influenzae and *Haemophilus parainfluenzae* (Table 2E):
Clarified recommendations for selecting QC strains based on the antimicrobial agents tested (p. 76).
Summary of Changes (Continued)

Streptococcus pneumoniae (Table 2G):
Added suggestions for assessing deterioration of oxacillin disk content (p. 84).

Anaerobes (Table 2J-1):
Clarified recommendations for selecting QC strains tested for routine QC (p. 102).

Expanded the definition of the intermediate interpretive category when used with anaerobic bacteria and addressed several clinical factors associated with this definition (p. 102).

Epidemiological Cutoff Values for Propionibacterium acnes (Table 2J-2):
New table with epidemiological cutoff values (ECVs) for vancomycin related to therapy of P. acnes infections (p. 106).

Tables 3A Through 3I – Screening and Confirmatory Tests

Tests for Carbapenemases in Enterobacteriaceae, Pseudomonas aeruginosa, and Acinetobacter spp. (Introduction to Tables 3B and 3C):
Added table that introduces Tables 3B and 3B-1 by summarizing methods for detecting carbapenemase-producing Enterobacteriaceae, P. aeruginosa, and Acinetobacter spp. (p. 112).

The Modified Hodge Confirmatory Test for Suspected Carbapenemase Production in Enterobacteriaceae (Table 3B):
Expanded recommendations for when the modified Hodge test might be used (pp. 114 to 115).

 Modifications of Table 3B When Using Interpretive Criteria for Carbapenems Described in M100-S20 (January 2010) (Table 3B-1):
Eliminated details of MHT performance (now only in Table 3B) and included only steps related to testing and reporting decisions for the MHT (p. 116).

Carba NP Confirmatory Test for Suspected Carbapenemase Production in Enterobacteriaceae, Pseudomonas aeruginosa, and Acinetobacter spp. (Table 3C):
Added new table with detailed instructions for performance of this phenotypic test for carbapenemase production in Enterobacteriaceae, P. aeruginosa, and Acinetobacter spp. (pp. 120 to 126).

 Modifications of Table 3C When Using Minimal Inhibitory Concentration Interpretive Criteria for Carbapenems Described in M100-S20 (January 2010) (Table 3C-1):
Added new table that includes only steps related to testing and reporting decisions for the Carba NP Test (pp. 123 to 126).

Tables 4 and 5 – Quality Control

Table 4A (p. 146):
Added QC range for:

Escherichia coli ATCC® 25922
Pefloxacin

Klebsiella pneumoniae ATCC® 700603
Ceftaroline-avibactam
Ceftazidime-avibactam
Ceftolozane-tazobactam
Summary of Changes (Continued)

Added recommendations for handling *E. coli* ATCC® 35218 to ensure it maintains its β-lactamase production integrity.

Table 5A (p. 158):
Added QC ranges for:

Klebsiella pneumoniae ATCC® 700603
Amoxicillin
Amoxicillin-clavulanate
Ampicillin
Ampicillin-sulbactam
Ceftriaxone
Ceftazidime
Piperacillin-tazobactam
Ticarcillin
Ticarcillin-clavulanate

Added recommendations for handling *E. coli* ATCC® 35218 to ensure it maintains its β-lactamase production integrity.

Added footnote to piperacillin for *K. pneumoniae* ATCC® 700603 that explains no range is recommended due to exquisite susceptibility of this organism to piperacillin (very low and off-scale MICs).

Table 6A – Solvents and Diluents (p. 180):
Revised diluent for tedizolid along with instructions for preparation of stock solutions.

Appendixes and Glossaries

Appendix A. Suggestions for Confirmation of Resistant (R), Intermediate (I), or Nonsusceptible (NS) Antimicrobial Susceptibility Test Results and Organism Identification:
Corrected susceptibility category result that should be investigated for *S. pneumoniae* with ceftaroline (previously “R”; now “NS”) (p. 196).

Appendix D. Cumulative Antimicrobial Susceptibility Report for Anaerobic Organisms (p. 208):
Updated table with current data available.

New Appendix F. Cefepime Breakpoint Change for Enterobacteriaceae and Introduction of the Susceptible-Dose Dependent Interpretive Category (p. 216):
Relocated information previously positioned in the front of M100 to new Appendix F (no changes to content).

New Appendix G. Epidemiological Cutoff Values (p. 220):
Added new appendix containing a detailed description of ECVs that is aimed at answering questions about this concept, which is appearing in M100 for the first time. Content defines ECVs and describes their intended use.

Glossary II – added pefloxacin (p. 228).
The Quality Management System Approach

Clinical and Laboratory Standards Institute (CLSI) subscribes to a quality management system (QMS) approach in the development of standards and guidelines, which facilitates project management; defines a document structure via a template; and provides a process to identify needed documents. The QMS approach applies a core set of “quality system essentials” (QSEs), basic to any organization, to all operations in any health care service’s path of workflow (ie, operational aspects that define how a particular product or service is provided). The QSEs provide the framework for delivery of any type of product or service, serving as a manager’s guide. The QSEs are as follows:

- Organization Personnel
- Process Management Equipment
- Customer Focus Purchasing and Inventory
- Facilities and Safety Documents and Records
- Process Management Information Management
- Nonconforming Event Management Assessments
- Continual Improvement

M100-S25 does not address any of the QSEs. For a description of the documents listed in the grid, please refer to the Related CLSI Reference Materials section on the following page.

Path of Workflow

A path of workflow is the description of the necessary processes to deliver the particular product or service that the organization or entity provides. A laboratory path of workflow consists of the sequential processes: preexamination, examination, and postexamination and their respective sequential subprocesses. All laboratories follow these processes to deliver the laboratory’s services, namely quality laboratory information.

M100-S25 addresses the clinical laboratory path of workflow steps indicated by an “X.” For a description of the other documents listed in the grid, please refer to the Related CLSI Reference Materials section on the following page.
Related CLSI Reference Materials

EP23-A™ Laboratory Quality Control Based on Risk Management; Approved Guideline (2011). This document provides guidance based on risk management for laboratories to develop quality control plans tailored to the particular combination of measuring system, laboratory setting, and clinical application of the test.

M23-A3 Development of In Vitro Susceptibility Testing Criteria and Quality Control Parameters; Approved Guideline—Third Edition (2008). This document addresses the required and recommended data needed for the selection of appropriate interpretive criteria and quality control ranges for antimicrobial agents.

M45-A2 Methods for Antimicrobial Dilution and Disk Susceptibility Testing of Infrequently Isolated or Fastidious Bacteria; Approved Guideline—Second Edition (2010). This document provides guidance to clinical microbiology laboratories for standardized susceptibility testing of infrequently isolated or fastidious bacteria that are not presently included in CLSI documents M02 or M07. The tabular information in this document presents the most current information for drug selection, interpretation, and quality control for the infrequently isolated or fastidious bacterial pathogens included in this guideline.

* CLSI documents are continually reviewed and revised through the CLSI consensus process; therefore, readers should refer to the most current editions.
Explore the Latest Offerings from CLSI!

As we continue to set the global standard for quality in laboratory testing, we’re adding initiatives to bring even more value to our members and customers.

Shop Our Online Products

Including eM100, the interactive searchable database for drug selection, interpretation, and quality control procedures within M100.

Visit the CLSI U Education Center

Where we provide the convenient and cost-effective education resources that laboratories need to put CLSI standards into practice, including webinars, workshops, and more.

Find Membership Opportunities

See the options that make it even easier for your organization to take full advantage of CLSI benefits and our unique membership value.

Shop Our Online Products

Including eCLIPSE Ultimate Access™, CLSI’s cloud-based, online portal that makes it easy to access our standards and guidelines—anytime, anywhere.

For more information, visit www.clsi.org today.