European Radiology:使用卷积神经网络,实现无肿瘤分割的全脑MRI胶质瘤生存预测

2022-07-03 影像放射新前沿 MedSci原创

传统上,成人弥漫性胶质瘤在组织病理学上分为世界卫生组织(WHO)II级、III级(低级别胶质瘤,LrGG)和IV级(胶质母细胞瘤,GBM)。

弥漫性胶质瘤是成人最常见的颅内原发性恶性肿瘤之一,复发率极高。传统上,成人弥漫性胶质瘤在组织病理学上分为世界卫生组织(WHO)II级、III级(低级别胶质瘤,LrGG)和IV级(胶质母细胞瘤,GBM)。2016年和2021年的最新WHO标准对分类进行了调整强调了分子标志物如异柠檬酸脱氢酶(IDH)突变等新的指标以实现更准确的分类。

最近,建立在大型标记医学图像数据库上的卷积神经网络(CNN)在疾病分类任务中显示出巨大潜力。然而与诊断相比,CNN的预后性能还没有得到全面的研究。另一方面,CNN需要大量的标记图像进行模型训练才能达到可接受的准确性。为了从CT或MRI中训练出一个准确的模型,大多数CNN需要分割的病变图像作为输入。然而,手动分割MRI中的胶质瘤是一项耗时的工作,自动化的肿瘤分割算法也需要手动分割的肿瘤图像作为训练实例。因此,建立一个基于CNN的免去肿瘤分割的生存预测模型,无疑具有巨大的临床效益。

近日,发表在European Radiology杂志的一项研究开发和验证一个用于预测术前全脑MRI的胶质瘤总生存率无需对肿瘤进行分割深度CNN(DeepRisk),将DeepRisk与根据专家分割的肿瘤图像建立的传统深度学习模型进行了比较,同时评估了DeepRisk临床和基因图谱中的预后价值

项多中心回顾性研究建立了两个深度学习模型用于从MRI中预测生存率,包括从全脑MRI中建立的DeepRisk模型以及从专家分割的肿瘤图像中建立的原始ResNet模型。两个模型都是使用训练数据集(n = 935)和内部调整数据集(n = 156)开发的,并在两个外部测试数据集(n = 194和150)和TCIA数据集(n = 121)上进行测试。C-指数、综合Brier得分(IBS)、预测误差曲线和校准曲线被用来评估模型的性能。 

总共有1556名患者入选(年龄,49.0±13.1岁;830名男性)。DeepRisk评分是一个独立的预测因素,可以将每个测试数据集中的患者分层为三个风险亚组。DeepRisk的IBS和C-index在外部测试数据集1中分别为0.14和0.83,在外部数据集2中为0.15和0.80,在TCIA数据集中为0.16和0.77,这与原始ResNet的预测结果相当。DeepRisk在6、12、24、26和48个月的AUC在0.77和0.94之间。将DeepRisk评分与临床分子因素结合起来,得到的提名图比临床列线图具有更好的校准和分类准确性(净分类改善0.69,P < 0.001)。 


图 DeepRisk(上行)和ResNet(下行)模型在6、12、24、36和48个月时分别在训练数据集(红色)、调整数据集(绿色)、外部测试数据集1(蓝色)和2(黄色)以及公共TCIA数据集(紫色)上的随时间而变化的ROC曲线

本研究所提出的深度学习模型可直接从术前全脑MRI中预测胶质瘤的总生存率,且不需要进行肿瘤分割,其性能与使用精确分割的肿瘤图像建立的ResNet模型相当。该模型的输出可进行患者的术前风险分层评分,且与现有的临床因素和IDH突变状态相比具有独立的预后价值。

 

原文出处:

Zhi-Cheng Li,Jing Yan,Shenghai Zhang,et al.Glioma survival prediction from whole-brain MRI without tumor segmentation using deep attention network: a multicenter study.DOI:10.1007/s00330-022-08640-7

作者:shaosai

版权声明:
本网站所有注明“来源:梅斯医学”或“来源:MedSci原创”的文字、图片和音视频资料,版权均属于梅斯医学所有。非经授权,任何媒体、网站或个人不得转载,授权转载时须注明“来源:梅斯医学”。其它来源的文章系转载文章,本网所有转载文章系出于传递更多信息之目的,转载内容不代表本站立场。不希望被转载的媒体或个人可与我们联系,我们将立即进行删除处理。
在此留言
评论区 (2)
#插入话题
  1. 2022-07-03 鹅不吃草

    学习了,谢谢了

    0

  2. 2022-07-03 yangchou

    好文章,值得一读。

    0

相关资讯

Nature:浙大二院发现嗅觉神经环路与脑胶质瘤的关系秘密

本项研究作为具有自主知识产权的脑恶性肿瘤起源与演进探索,在国内医学界中凤毛麟角。

ASCO2022速递:中国胶质瘤患者EGFR突变的研究概况

EGFR扩增是最常见的突变类型。SNV和Indel亚型共122个,几乎出现在整个外显子区,其中外显子7包含最多21个不同亚型,以p.A289V为主要亚型。在ECD中亚型的分布明显多于ICD。

European Radiology:MR在评估胶质瘤级别、细胞增殖和IDH-1基因突变状态中的应用

弥散加权成像(DWI)和弥散张量成像(DTI)已被广泛用于评估胶质瘤的胶质瘤等级、Ki-67表达和IDH突变等特征。

European Radiology:VSASL技术在脑胶质瘤定性、定量分析的应用

血管生成是侵袭性肿瘤增殖、浸润和转移的必要条件,因此较高的肿瘤血管是诊断、分级和治疗反应评估的重要生物标志物。

ASCO 2022: 神经肿瘤重磅研究荟萃

ASCO神经系统肿瘤重磅研究

ASCO 2022: 神经肿瘤领域重磅研究合集

ASCO 神经肿瘤研究,有哪些重磅研究