PLOS Biology:再添新证据!厦门大学张杰团队发现通过膳食补充D-丝氨酸可延缓衰老和认知衰退

2023-03-23 Aging “Aging”公众号 发表于上海

首次发现下丘脑中Menin表达的下降可能是衰老的驱动因素,导致机体出现系统性衰老表型和认知功能障碍。Menin可能是连接衰老的遗传、炎症和代谢因素的关键蛋白。

衰老是机体生理功能的系统性退化,最终导致生命结束的生理和病理进程。它的发生发展与多种老年退行性疾病,诸如阿尔茨海默病、糖尿病等密切相关。

衰老是一个相当复杂的生物学过程,其调控机制尚不十分清楚。因此,探索衰老的遗传学机制,寻找干预措施来延缓衰老,减少衰老相关疾病的发生,是解决衰老及衰老相关疾病首要的科研目标。

2023年3月10日,来自湖北大学生命科学学院以及武汉大学人民医院的科学家合作在Nature Communications 杂志发表题为“Phosphoglycerate dehydrogenase activates PKM2 to phosphorylate histone H3T11 and attenuate cellular senescence”的文章,该文章发现增强丝氨酸生物合成可延缓衰老促进健康老龄化(原文阅读)。

2023年3月16日,厦门大学医学院神经科学研究所张杰教授、冷历歌副教授等在 PLOS Biology 期刊发表了题为 Hypothalamic Menin regulates systemic aging and cognitive decline 的研究论文。

该研究发现,下丘脑的Menin蛋白表达随衰老进程而逐渐下降,影响了机体的代谢稳态和D-丝氨酸的合成,进而导致衰老进程的加速和认知功能障碍。

该研究还发现,在下丘脑回补Menin蛋白或在饮食中添加D-丝氨酸可以显着改善年老小鼠的衰老表型和认知障碍。

下丘脑是调控机体衰老最主要的脑区,在衰老过程中下丘脑存在微炎症,其由IKKβ/NF-κB介导激活,并进一步影响系统性衰老和衰老相关的认知功能障碍。

张杰教授团队2018年发表在 Neuron 的文章中发现Menin能够通过抑制NF-κB-p65的转录活性,抑制炎症通路的激活。在这篇新论文中,张杰教授团队首先筛选到小鼠下丘脑Menin在衰老中表达显着减低,Menin又在下丘脑VMH区有较高表达。

基于这些基础,研究团队猜想下丘脑中的Menin在对抗衰老中可能起到重要作用。因此,研究团队构建了下丘脑SF-1神经元的Menin特异性敲除小鼠(ScKO)。下丘脑SF-1神经元中敲除Menin会导致小鼠出现寿命的缩短、全身系统性衰老表型包括骨量、肌肉、尾筋弹性、皮肤厚度的减少,以及认知功能障碍。同时,他们还使用了AAV辅助的下丘脑Menin敲降,同样发现小鼠产生了认知功能障碍表型,排除了其他腺体对本实验的影响。为了逆转小鼠的衰老表型,研究团队在20月龄的衰老小鼠下丘脑回补Menin,成功逆转了小鼠的全身系统性衰老表型和认知功能障碍。

另一方面,研究团队发现下丘脑Menin的缺失影响了机体的代谢稳态,并通过表观遗传学调控作用,影响了D-丝氨酸合成路径中第一步限速酶PHGDH的转录,从而影响了D-丝氨酸的水平。而D-丝氨酸是NMDA受体的协同激动剂,对神经元突触可塑性和学习记忆等认知功能至关重要。大豆、鸡蛋、鱼和坚果等食物中富含D-丝氨酸。研究团队给予ScKO小鼠和年老小鼠饮食补充D-丝氨酸,显着改善了这两种小鼠的认知功能障碍。

基于上述试验结果,研究团队有了以下重要发现:首次发现下丘脑中Menin表达的下降可能是衰老的驱动因素,导致机体出现系统性衰老表型和认知功能障碍。Menin可能是连接衰老的遗传、炎症和代谢因素的关键蛋白,还可以通过表观遗传学机制调控D-丝氨酸的生成,而进一步研究发现D-丝氨酸是一种潜在的治疗认知功能障碍的候选代谢物。

张杰教授和冷历歌副教授为该论文通讯作者。同时,冷历歌副教授为本论文的第一作者。本研究工作得到国家重点研发计划项目、国家自然科学杰出青年基金、联合基金重点项目,衰老重大研究计划重点项目,厦门大学等的资助和支持。

张杰教授、博导、国家杰出青年科学基金、国家优秀青年科学基金、教育部新世纪优秀人才等获得者。长期从事重大脑疾病比如老年痴呆(AD)、抑郁症等的致病机理和药物开发研究。至今以第一作者或通讯作者发表论文30余篇。近5年张杰教授以通讯作者在国际知名学术期刊(Nature Neuroscience、Neuron、Nature Metabolism、Biological Psychiatry、Cell Reports、Plos Biology、PNAS、JNS、JBC、Clinical Cancer Research等)发表多篇论文。

原始出处:

Lige Leng, Ziqi Yuan, Xiao Su, et al. Hypothalamic Menin regulates systemic aging and cognitive decline. PLOS Biology, 2023.

版权声明:
本网站所有内容来源注明为“梅斯医学”或“MedSci原创”的文字、图片和音视频资料,版权均属于梅斯医学所有。非经授权,任何媒体、网站或个人不得转载,授权转载时须注明来源为“梅斯医学”。其它来源的文章系转载文章,或“梅斯号”自媒体发布的文章,仅系出于传递更多信息之目的,本站仅负责审核内容合规,其内容不代表本站立场,本站不负责内容的准确性和版权。如果存在侵权、或不希望被转载的媒体或个人可与我们联系,我们将立即进行删除处理。
在此留言
评论区 (0)
#插入话题

相关资讯

新冠病毒被证实会导致DNA损伤和细胞衰老,这会加速癌症和人类衰老吗?

新冠病毒(SARS-CoV-2)是一种RNA病毒,是COVID-19大流行的罪魁祸首。其30 kb的基因组编码26个多肽/蛋白,包括16个非结构蛋白, 4个结构蛋白(例如核衣壳蛋白)和6个附属蛋白。

Aging Cell:研究发现嗅觉功能障碍是衰老更早期的标志,补充NAD+可部分恢复嗅觉功能并延长寿命

随着年龄的增长,动物和人类中NAD+的丰度逐渐下降,导致年龄相关的认知能力下降、癌症风险以及对年龄相关疾病的易感性增加。然而迄今为止,很少有关于随着年龄增加嗅球中NAD+丰度变化的研究。

Nature:衰老的根源找到了,返老还童可能真不是白日梦

IL-1抑制剂在改善老年人血液生成方面具有巨大的潜在应用,特别是在化疗或免疫抑制后的再生环境中。

Journal of Dietary Supplements:补充复合维生素可防止氧化应激介导的端粒缩短

越来越多的科学研究表明饮食在生物体的寿命中起着决定性作用,这一作用可能部分是通过对端粒长度的影响来调节的,先前多项研究更是表明补充单一维生素可导致端粒延长,但补充维生素混合物是否会影响端粒长度。

Nat Commu:尼古丁还能抗衰老?低剂量尼古丁可激活NAD+合成、延缓衰老

减缓衰老,延年益寿,是许多人的愿景,但是随着年龄的增长,人类的各项身体机能(力量、灵活性、脑力等等)会不可避免的不断衰弱。这不仅仅影响到个人,也给公共医疗乃至社会造成重大负担。

Aging:不愧是“神药”,二甲双胍影响DNA甲基化,有助于抗衰老

二甲双胍是治疗2型糖尿病的首选和全程药物,也是单药治疗和联合治疗的首选药物,受众群体广泛,一度被患者称为“降糖神药”。在我国也已经有20多年的临床应用经验,是目前全球应用最广泛的口服降糖药之一。