Radiology:人工智能,让胸片“加量不加价”!

2021-06-11 shaosai MedSci原创

胸片是应用最广泛的评估各种胸部疾病的影像学检查。由于胸片是一个在二维图像上同时显示多个正常和异常结构的重叠图像,因此极易造成病变的漏诊及误诊。

胸片是应用最广泛的评估各种胸部疾病的影像学检查。由于胸片是一个在二维图像上同时显示多个正常和异常结构的重叠图像,因此极易造成病变的漏诊及误诊。因此,已有多项研究对胸片的计算机辅助诊断(CAD)系统进行了开发和评价。

最近,基于深度学习的胸片CAD系统在检测结节、结核和气胸等各种异常方面表现出了比传统系统更好的性能,临床前景甚好。然而在以往所有的研究在评估计算机辅助检测在胸片阅读中对阅读者诊断性能的影响时,均使用了顺序阅读设计,这可能会由于阅读顺序或回忆偏差而对结果产生误差。而在两个阅读阶段之间进行交叉或加入间隔时间可缓解阅读顺序及回忆所带来的部分偏差。

近日,发表在Radiology杂志的一项研究在随机交叉设计中,比较了有无深度学习辅助检测(DLD)系统的阅读者在胸片上检测和定位结节、实变、间质模糊、胸腔积液和气胸等主要异常的诊断性能,为胸片的进一步广泛应用及增加医生诊断信心提供了技术支持。

本研究回顾性地对2016年1月至2017年12月期间的正常和异常胸片进行了收集。这些胸片被随机分为两组,包括胸部专业放射科医师在内的6名阅读者在使用或没有使用商用DLD系统的情况下,在交叉设计的情况下对每一张胸片进行评价。使用McNemar和配对t检验比较了使用DLD系统和不使用DLD系统的阅读者JAFROC FOM、受试者工作特性曲线下面积(AUC)、敏感性、特异性、假阳性率和每张图像的阅读时间。

共评估了114例正常的(平均患者年龄±标准偏差,51岁±11岁;58名男性)和114例异常的(平均患者年龄,60岁±15岁;75名男性)胸片。胸片被随机分为两组:A组(n = 114)和B组(n = 114)。使用DLD系统提高了阅读者的JAFROC FOM(从0.90到0.95,P = .002)、AUC(从0.93到0.98,P = .002)、对每个病变的敏感性(从83%[990个病变中的822个]] 到89.1%[990个病变中的882个],P = .009)、每个图像敏感性(从80%[684个中的548个]到89%[684个中的608],P = .009)和特异性(从 89.3%[684幅X射线照片中的611]降低到96.6%[684片X射线照片中的661],P = .01),并缩短了每张图像的阅读时间(从10-65秒降至6-27秒,P <.001)。单独DLD系统的性能优于阅读者的总诊断性能(JAFROC FOM分别为0.96和0.90,P = .007; AUC分别为0.98和0.93,P = .003)。

表1 阅读者及DLD系统的诊断性能。

图1 未使用DLD系统辅助、使用DLD系统辅助和单独DLD系统时的a)JAFROC和(b)ROC曲线。

综上所述,包括胸部专业的放射科医生在内的阅读者在使用基于深度学习辅助检测(DLD)系统的情况下,在胸片上对主要异常病变的检测和定位方面的诊断性能显著提高,并减少了每张胸片的阅读时间,为临床快速、准确的筛查胸片异常提供了技术支持,为人工智能的进一步应用铺平了道路。

原文出处:

Jinkyeong Sung,Sohee Park,Sang Min Lee,et al.Added Value of Deep Learning-based Detection System for Multiple Major Findings on Chest Radiographs: A Randomized Crossover Study.DOI:10.1148/radiol.2021202818

版权声明:
本网站所有注明“来源:梅斯医学”或“来源:MedSci原创”的文字、图片和音视频资料,版权均属于梅斯医学所有。非经授权,任何媒体、网站或个人不得转载,授权转载时须注明“来源:梅斯医学”。其它来源的文章系转载文章,本网所有转载文章系出于传递更多信息之目的,转载内容不代表本站立场。不希望被转载的媒体或个人可与我们联系,我们将立即进行删除处理。
在此留言
评论区 (3)
#插入话题
  1. 2021-06-14 周翠翠

    认真学习了,不错

    0

  2. 2021-06-11 医鸣惊人

    认真学习了

    0

相关资讯

Radiology:在行DSA时,你是否还在为患者无法制动而烦恼?

数字减影血管造影(DSA)通过从动态血管造影中减去掩膜图像来生成图像。掩模图像是在成像期间造影剂到达血管之前获得的背景图像。

Radiology:人工智能,让乳腺癌筛查不再“一刀切”!

在许多发达国家,乳腺癌筛查项目依旧采用“一刀切”的检查方法,并未针对单个级别的癌症检测进行优化。在乳腺癌筛查中,MRI与乳腺钼靶检查相比有助于提高乳腺癌的早期检测。

Radiology:无需对比剂也可预测MS病变的活动性?快来看看我们怎么做到的吧!

多发性硬化症(MS)是年轻人中最常见的非创伤性脱髓鞘性神经系统疾病,在全世界范围内受累人群达250万人以上。MRI通是MS最常用的诊断和治疗监测手段。

Radiology:深度学习,使肺气肿CT模式的自动分类成为可能

据估计,美国有1200万成年人被诊断患有慢性阻塞性肺病(COPD),另有1200万人被认为患有未确诊的COPD。现阶段,视觉和定量CT成像是评估COPD的首选影像学手段。

Radiology:深度学习,让胸片焕发“第二春”!

尽管胸片是最常见和最完善的成像方式之一,但对于重要的临床表现,胸片存在显著的解读差异性和较低的敏感性。

Medical Image Analysis: 深度学习预测COVID-19恶性进展

2020年以来,新冠肺炎对人民生活产生了根本性影响。截至2020年8月12日,全球COVID-19感染人数飙升至2020万人(20,162,474),死亡率为3.7% (737,417/20,162,

打开APP