Nat Metab:韩敬东/周永合作发布,三维面部图像可以预测人类衰老速度

2020-09-08 haibei MedSci原创

韩敬东/周永课题组合作在Nature Metabolism发文,其通过对约5000名汉族个体的非侵入性三维(3D)面部图像进行训练,开发了基于卷积神经网络的模型。

老龄化是许多复杂人类疾病的主要风险因素。在同一年龄段的个人之间,生物老化的速度差异很大。为了量化年龄,理想的情况是评估生物年龄而不是年代年龄。然而,由于目前缺乏生物年龄的黄金标准,年代年龄的人口平均数往往被假定为生物年龄的标准。

平均值或标准曲线的偏离者或离群值被定义为,并常常被其他生理或分子参数证实为快老或慢老。在此假设的基础上,人们开发了许多量化衰老的方法。例如,使用人类外周血中的转录组预测年龄,其年代年龄和预测生物年龄之间的平均绝对差异(MAD)为7.8年;使用蛋白质组具有0.93-0.97的皮尔逊相关系数(PCC);使用DNA甲基化预生物年龄在656个人类队列的全血中具有4.9年的MAD,在异质组织中具有3.6年的MAD。

然而,由于转录组,DNA甲基化组和蛋白质组必须在血细胞或其他组织中测量,侵入性和高成本排除了它们作为体检常规项目或大规模筛查项目的可能性。

在传统中医中,面部图像是一直被用作评估健康和疾病状况的主要诊断工具。这种做法起源于2000多年前,并越来越多地被西医临床医生用于诊断发育综合症。之前的研究工作已经建立了3D人体面部图像作为老化标志物,生成了部分最小二乘回归(PLSR)模型,并利用年代和预测年龄之间的差异(AgeDiff)来识别老化率的异常值。

在此,韩敬东/周永课题组合作在Nature Metabolism发文,其通过对约5000名汉族个体的非侵入性三维(3D)面部图像进行训练,开发了基于卷积神经网络的模型,并发现年代年龄或感知年龄与预测年龄的平均差异分别为±2.8和2.9岁。

研究人员进一步对280个个体的血液转录组进行剖析,并通过因果推理模型推断介导生活方式对面部衰老率影响的分子调控因子。这些关系已经在人类血液基因表达-3D面部图像(HuB-Fi)数据库中进行了沉积和可视化。

总的来说,在该研究中,研究人员发现人类在血液和面部的衰老速度都不一样,但其是连贯的,而且异质性在中年时达到顶峰。该研究提供了一个例子,说明人工智能可以被运用来确定人类的感知年龄,来作为生物年龄的标志,同时不再依赖对年代年龄的预测误差,并估计人口内老化率的异质性。

 

原始出处:

Xian Xia et al. Three-dimensional facial-image analysis to predict heterogeneity of the human ageing rate and the impact of lifestyle. Nature Metabolism (2020). 

 

版权声明:
本网站所有注明“来源:梅斯医学”或“来源:MedSci原创”的文字、图片和音视频资料,版权均属于梅斯医学所有。非经授权,任何媒体、网站或个人不得转载,授权转载时须注明“来源:梅斯医学”。其它来源的文章系转载文章,本网所有转载文章系出于传递更多信息之目的,转载内容不代表本站立场。不希望被转载的媒体或个人可与我们联系,我们将立即进行删除处理。
在此留言
评论区 (9)
#插入话题
  1. 2020-10-07 ms1000001157291874

    研究新颖,受益良多

    0

  2. 2020-09-23 Baodongxu

    厉害👍之前看到中国学者的研究是测量端粒长短的,也很有意义

    0

  3. 2020-09-17 ms4000000956890434

    👌

    0

  4. 2020-09-11 ms1000001326500600

    万物皆可深度学习?

    0

  5. 2020-09-08 ms1000000562250041

    了解

    0

相关资讯

Modern Pathology:人工智能辅助能够显著改善病例学家对前列腺活检的格林森分级

格林森评分是前列腺癌患者最重要的预后标记,但是受观察者的影响很大。基于深度学习的人工智能(AI)系统在格林森分级中能够达到病理学家水平。然而,该系统的表现性能在人工制品,异体组织或者其他异常存在的情况

The Lancet Digital Health:人工智能算法识别前列腺癌精确度高达98%

前列腺癌是发生于前列腺的上皮恶性肿瘤,是男性泌尿生殖系统最常见的恶性肿瘤之一。前列腺癌在疾病早期阶段,多数患者无明显症状,一旦前列腺癌开始快速生长或扩散到前列腺外,病情就非常严重了。因此,前列腺癌的前

榜样 | 新华医院如何用人工智能提升医疗质量管理

在6月30日健康界举办的“《北斗夜话》系列—数字化领导力:科技驱动医院发展新势能人工智能”中,新华医院副院长潘曙明提到,人工智能与医疗质量管理有着相似的思维模式,能

Nat Metab:AI助力1型糖尿病患者的用药管理

研究人员采用了一个独特的虚拟平台来生成超过50,000个血糖观测值,以训练一个名为KNN-DSS的决策支持系统,来识别高血糖或低血糖的原因,并从一组12个潜在建议中确定必要的胰岛素调整方案。

洞察科技,感知未来:人工智能将如何改变学术搜索?

科技信息是创新的基础,而学术搜索使得科研工作者可以从海量资料中更快捷、更精准地搜集所需要的信息。