根据变量类型选择合适的统计分析方法

2015-09-27 MedSci MedSci原创

面对大量数据,你将如何开展数据统计分析?您会选择什么样的数据分析方法呢?您是否看着数据感到迷茫,无所适从。认真读完这篇文章,或许你将有所收获。 把握两个关键 1、抓住业务问题不放松。您费大力气收集数据的动机是什么?你想解决什么问题?这是核心,是方向,这是业务把握层面。 2、全面理解数据。哪些变量,什么类型?适合或者可以用什么统计方法,这是数据分析技术层面。须把握三大关键:变量、数据分析方法、

面对大量数据,你将如何开展数据统计分析?您会选择什么样的数据分析方法呢?您是否看着数据感到迷茫,无所适从。认真读完这篇文章,或许你将有所收获。

把握两个关键

1、抓住业务问题不放松。您费大力气收集数据的动机是什么?你想解决什么问题?这是核心,是方向,这是业务把握层面。

2、全面理解数据。哪些变量,什么类型?适合或者可以用什么统计方法,这是数据分析技术层面。须把握三大关键:变量、数据分析方法、变量和方法的关联。

认识变量

数据分析

认识数据分析方法

选择合适的数据分析方法是非常重要的。选择数据分析(统计分析)方法时,必须考虑许多因素,主要有:

1、数据分析的目的,

2、所用变量的特征,

3、对变量所作的假定,

4、数据的收集方法。选择统计分析方法时一般考虑前两个因素就足够了。

将变量与分析方法关联、对应起来

其一:

数据分析

其二:

数据分析

相关资讯

那些年,收到的让人无法回答的审稿人意见

写文章投稿,审稿人给出的建议是五花八门。林子大了,什么鸟都有。同样,审稿意见多了,什么内容都有。虽然我们尊重审稿人及其意见,然而,总有一些审稿意见让人真的无法回答,又难以反驳。本文聊一下我个人遇到的一

临床研究统计学中常见的“坑”

随机对照临床试验(Randomized Controled Trial, RCT)是常见的重要的循证医学证据,为临床诊治提供重要依据。在临床试验设计中,专业设计和统计学设计都很重要。统计学设计包括:确

如何通俗地理解Family-wise error rate(FWER)和False discovery rate(FDR)

Family-wise error rate(FWER),暂时还不了解比较通俗易懂的翻译。False discovery rate(FDR),一般翻译为错误发现率。在研究使用假设检验解决机器学习中的分类问题时,我遇到了多重假设检验问题。FWER和FDR正是解决这一问题的两种方法。经过老师和师兄师姐的指导,我能够将FDR应用于自己的问题当中,并且实验结果也有所改善。但是,应用之后,我仍然存在一些

2020年癌症统计:美国癌症死亡率创纪录下降

2020年1月8日,最新的美国癌症发病情况年度报告《2020年癌症统计》公布,这是由美国肿瘤学会每年在《CA:临床医生癌症杂志》上发布的报告。这份报告显示,1991年至2017年,美国癌症死亡率下降29%,其中2016年到2017年下降2.2%,创有记录以来美国癌症死亡率的最大年度降幅。报告指出这一进步主要归结于4种常见癌症的死亡率长期下降:肺癌、结直肠癌、乳腺癌和前列腺癌。图 | 参考资料1

CA Cancer J Clin:2019年年龄不小于85岁成年人癌症统计研究

在美国,年龄不小于85岁的老年人口在快速的增长,而他们的癌症状况仍旧所知甚少。最近,有研究人员综合不同的数据库全面的提供了年龄不小于85岁老年人的癌症发生情况。研究发现,在2019年,美国将会大约诊断140690个癌症案例,且将有103250例癌症死亡。在这些个体中最常见的癌症为肺、乳腺、前列腺和结肠直肠癌,这与普通人群相同。总的癌症发生率在男性和女性中的峰值在1990年,之后发生率加速减少。这些