Neuron:科学家绘制干细胞发育路线图

2019-05-30 赵熙熙 中国科学报

美国科学家日前报告称,他们已开发出一种通过追踪细胞内表达基因来描绘中枢神经系统发育的方法。这项技术在小鼠视网膜中得到证实,其跟踪了个体细胞在发育过程中使用的基因的活性,使研究人员能够以前所未有的方式详细识别相关模式。研究人员表示,这种精确路线图可在未来用于开发致盲性疾病和其他神经系统疾病的再生疗法。


美国科学家日前报告称,他们已开发出一种通过追踪细胞内表达基因来描绘中枢神经系统发育的方法。这项技术在小鼠视网膜中得到证实,其跟踪了个体细胞在发育过程中使用的基因的活性,使研究人员能够以前所未有的方式详细识别相关模式。研究人员表示,这种精确路线图可在未来用于开发致盲性疾病和其他神经系统疾病的再生疗法。

“这无疑是我们在中枢神经系统细胞发育方面最全面的路线图。”约翰斯·霍普金斯大学医学院神经科学教授兼细胞工程研究所成员Seth Blackshaw说。

“如果我们能够利用这种路线图让干细胞制造某种类型的视网膜细胞,有朝一日便可以替换因黄斑变性和其他致盲性疾病而丧失的细胞。”该校博士后Genevieve Stein-O’Brien说。

该研究于5月22日发布在《神经元》杂志网络版。Blackshaw表示,视网膜是一种已充分研究的结构,其包含多种存在于神经系统其他部分的细胞类型,因此可以作为一个极好的范例用于研究中枢神经系统发育。

构成视网膜的各种细胞类型都由神经祖细胞产生,后者为干细胞样细胞,具有发育成几乎任何视网膜细胞类型的能力,而这取决于在发育期间开启和关闭的基因。创造每种细胞类型所需的基因模式沿着严格的时间线出现。神经元如视网膜中的吸光视杆细胞和视锥细胞均由较年轻的祖细胞产生,而支持性神经胶质细胞由较老的祖细胞产生。

为了详细研究这一过程并构建路线图,研究人员首先对不同发育时间点的个体小鼠视网膜细胞的脱氧核糖核酸(DNA)进行了测序——从第一代祖细胞到成年视网膜细胞。

研究人员随后将这些信息输入由Stein-O’Brien开发的机器学习计算机程序,该程序旨在快速压缩大量遗传数据,将相似细胞分组,进而生成一张路线图,使研究人员能够可视化发育过程。该计算机程序同时形成一个分支结构,让研究人员了解哪些细胞类型会产生其他细胞,以及发生什么样的遗传变化,导致小鼠和人类视网膜中出现超过100种细胞类型。

“该路线图提供了一种方式,让我们可以了解个体基因和基因网络对发育中的中枢神经系统的影响。”Blackshaw说。

在后续的一项原理验证实验中,研究人员仔细研究了3种基因,即核因子1(NFI)a、b和x,这些基因对于帮助祖细胞确定其年龄以及可以产生的视网膜细胞类型必不可少。

研究人员对小鼠进行了基因工程改造,使它们大量表达这3种基因或者完全不表达,并通过跟踪在计算机程序中的任何给定时间“开启”何种基因,观察其视网膜细胞生命周期如何改变。

研究人员发现,NFI基因表达水平升高的细胞表现得比实际年龄更大,并且比正常视网膜祖细胞产生更多相应的细胞类型(神经胶质细胞)。相比之下,没有NFI基因的祖细胞继续产生早期的细胞类型(如视杆细胞),并像年轻祖细胞一样继续分裂。

研究人员表示,他们最终希望将该技术应用于其他细胞类型,以更好地了解哪些基因影响身体其他组织中的疾病发展。

“如果我们确切知道祖细胞如何从未定型干细胞群发育成成熟组织,就可以使用这个路线图将它们重定向,以沿特定的其他路径发育。”该校神经科学助理教授兼McKusick-Nathans遗传医学研究所Loyal Goff说。

原始出处:

Brian S. Clark ,et al.Single-Cell RNA-Seq Analysis of Retinal Development Identifies NFI Factors as Regulating Mitotic Exit and Late-Born Cell Specification.Neuron.Published:May 22, 2019DOI:https://doi.org/10.1016/j.neuron.2019.04.010

版权声明:
本网站所有内容来源注明为“梅斯医学”或“MedSci原创”的文字、图片和音视频资料,版权均属于梅斯医学所有。非经授权,任何媒体、网站或个人不得转载,授权转载时须注明来源为“梅斯医学”。其它来源的文章系转载文章,或“梅斯号”自媒体发布的文章,仅系出于传递更多信息之目的,本站仅负责审核内容合规,其内容不代表本站立场,本站不负责内容的准确性和版权。如果存在侵权、或不希望被转载的媒体或个人可与我们联系,我们将立即进行删除处理。
在此留言
评论区 (2)
#插入话题
  1. [GetPortalCommentsPageByObjectIdResponse(id=1751883, encodeId=04711e5188335, content=<a href='/topic/show?id=9b6a12e0155' target=_blank style='color:#2F92EE;'>#Neuron#</a>, beContent=null, objectType=article, channel=null, level=null, likeNumber=25, replyNumber=0, topicName=null, topicId=null, topicList=[TopicDto(id=12701, encryptionId=9b6a12e0155, topicName=Neuron)], attachment=null, authenticateStatus=null, createdAvatar=null, createdBy=c9c736410065, createdName=by2021, createdTime=Sat Oct 19 18:04:00 CST 2019, time=2019-10-19, status=1, ipAttribution=), GetPortalCommentsPageByObjectIdResponse(id=1347404, encodeId=4824134e404ca, content=<a href='/topic/show?id=88713e938c1' target=_blank style='color:#2F92EE;'>#发育#</a>, beContent=null, objectType=article, channel=null, level=null, likeNumber=23, replyNumber=0, topicName=null, topicId=null, topicList=[TopicDto(id=37938, encryptionId=88713e938c1, topicName=发育)], attachment=null, authenticateStatus=null, createdAvatar=, createdBy=f4c124, createdName=neurowu, createdTime=Sat Jun 01 12:04:00 CST 2019, time=2019-06-01, status=1, ipAttribution=)]
    2019-10-19 by2021
  2. [GetPortalCommentsPageByObjectIdResponse(id=1751883, encodeId=04711e5188335, content=<a href='/topic/show?id=9b6a12e0155' target=_blank style='color:#2F92EE;'>#Neuron#</a>, beContent=null, objectType=article, channel=null, level=null, likeNumber=25, replyNumber=0, topicName=null, topicId=null, topicList=[TopicDto(id=12701, encryptionId=9b6a12e0155, topicName=Neuron)], attachment=null, authenticateStatus=null, createdAvatar=null, createdBy=c9c736410065, createdName=by2021, createdTime=Sat Oct 19 18:04:00 CST 2019, time=2019-10-19, status=1, ipAttribution=), GetPortalCommentsPageByObjectIdResponse(id=1347404, encodeId=4824134e404ca, content=<a href='/topic/show?id=88713e938c1' target=_blank style='color:#2F92EE;'>#发育#</a>, beContent=null, objectType=article, channel=null, level=null, likeNumber=23, replyNumber=0, topicName=null, topicId=null, topicList=[TopicDto(id=37938, encryptionId=88713e938c1, topicName=发育)], attachment=null, authenticateStatus=null, createdAvatar=, createdBy=f4c124, createdName=neurowu, createdTime=Sat Jun 01 12:04:00 CST 2019, time=2019-06-01, status=1, ipAttribution=)]
    2019-06-01 neurowu

相关资讯

Cell Rep:什么物质能阻止神经细胞退化?

杜克-新加坡国立大学医学院(Duke-NUS Medical School)的一项研究发现,以在基因调控中的作用而闻名的多蛋白“整合子复合体(Integrator complex)”成员,对于果蝇的大脑健康发育至关重要。这一发现对进一步理解和治疗人类神经发育障碍具有指导意义。

elife:干细胞技术为骨愈合带来了好消息

骨头是怎么愈合的,怎么能愈合得更好?根据最近发表在eLife杂志上,来自南加州大学(USC)的干细胞研究,这些问题的答案可能在于新发现的“信使”细胞群。

PNAS:心脏修复新曙光!胎盘干细胞能再生心肌

近日,美国西奈山伊坎医学院(Icahn School of Medicine at Mount Sinai)的研究人员发现,在动物模型中,一些胎盘干细胞在心脏病发作后再生健康的心脏细胞。该研究结果发表在《PNAS》上,这代表了科学家可能找到一种再生心脏和其他器官的新疗法。

Plos Biology:利用人干细胞“年轻因子”治疗骨关节炎取得新进展

近期,中科院生物物理所刘光慧研究组同北京大学汤富酬研究组、中科院动物所曲静研究组合作,在PLOS Biology在线发表题为“Up-regulation of FOXD1 by YAP alleviates senescence and osteoarthritis”的研究论文。该研究首次报道了YAP-FOXD1通路在人干细胞去衰老(De-senescence)及骨关节炎基因治疗中的作用及分子机制

CELL:适应性免疫抗性从肿瘤起始干细胞中出现

我们的身体配备了强大的免疫监视功能,可以清除癌细胞。至今为止,我们对于形成和传播癌症的肿瘤起始干细胞(tSCs)如何装备自己,克服这一障碍仍然知之甚少。

NEJM:干细胞在疾病治疗方面的应用

2016年足球运动员C罗不幸在比赛中发生肌肉损伤,为了加速复出,C罗采取干细胞疗法修复自己的肌肉。 干细胞又被称为“万能细胞”,因为能够不断分裂,并分化成任何类型的细胞而得名。在医学上,利用干细胞的这一特性,已经广泛的应用在了各种疾病的治疗中。其中最火热研究方向是将人体的体细胞通过技术手段诱导多能干细胞(iPSCs),这不仅避免了伦理争论,应用范围也更广。 那么干细胞到底能在哪些用途上