高大上的lasso回归模型图,怎么来的?

2020-08-15 网络 网络

今天我们来聊一聊lasso回归算法。与预后有关的文章,传统的做法一般会选择多变量cox回归,高级做法自然就是我们今天的lasso分析。

今天我们来聊一聊lasso回归算法。与预后有关的文章,传统的做法一般会选择多变量cox回归,高级做法自然就是我们今天的lasso分析。 首先我们先来几篇文献,看一下lasso最近发的两篇文章,如下: 这两篇文章均是采用了lasso回归的范文。感兴趣的可以自行下载学习,当然今天我们主要是和大家探讨lasso回归的细枝末节,具体体会这个算法的精妙和思想。 Lasso回归本质上就是一种回归分析,我们见到最多的或许就是线性回归,方程如下: 其中x为自变量,y为因变量,线性回归采用一个高维的线性函数来尽可能的拟合所有的数据点,最简单的想法就是最小化函数值与真实值误差的平方,比如假设我们构建一个函数H。 这个时候我们需要保证函数J达到最小,就可以了。 Lasso回归则是在一般线性回归基础上加入了正则项,在保证最佳拟合误差的同时,使得参数尽可能的“简单”,使得模型的泛化能力强。正则项一般采用一,二范数,使得模型更具有泛化性,同时可以解决线性回归中不可逆情况。这个时候你可能不淡定了,你是魔鬼吗?什么是正则项??? 正则项:正则化就是通过对模型参数进行调整(数量和大小),降低模型



版权声明:
本网站所有注明来源:“梅斯医学”或“MedSci”或“MedSci原创”的文字、图片和音视频资料,版权均属于梅斯医学所有。非经授权,任何媒体、网站或个人不得转载,否则将追究法律责任。取得书面授权转载时,须注明“来源:梅斯医学”。其它来源的文章系转载文章,本网所有转载文章系出于传递更多信息之目的,转载内容不代表本站立场。不希望被转载的媒体或个人可与我们联系,我们将立即进行删除处理。
在此留言
评论区 (3)
#插入话题
  1. 2020-08-15 志明

    图破了。

    0

  2. 2020-08-27 14818eb4m67暂无昵称

    学习了

    0

  3. 2020-08-16 1240394fm61暂无昵称

    看不到图

    0

相关资讯

巧用LASSO回归构建高预测水平的临床预后模型

对于医生来说,如果有某种“特定功能”来预测患者是否会有未知结果,那么许多医疗实践模式或临床决策都会改变。在临床上,几乎每天我们都会听到这样的叹息:“如果我能提前知道