AI 可提前一个月预测癫痫发作,成功率99.6%

2019-11-24 不详 网络

对癫痫患者来说,他们的大脑神经元会突然异常放电,导致大脑功能短暂出障碍,这样的患者在全球约有 5000 万个。棘手的是,这种疾病在发生前通常没有任何预警。 近日,美国路易斯安那大学拉斐特分校的两名研究员开发出了一种新的人工智能模型,最多能在患者癫痫发作前一个月就提前进行预测。 该模型的开发者 Hisham Daoud 表示,癫痫总是在没有任何前兆的情况下突然发作,这点可能对患者的心理产生严重的

癫痫患者来说,他们的大脑神经元会突然异常放电,导致大脑功能短暂出障碍,这样的患者在全球约有 5000 万个。棘手的是,这种疾病在发生前通常没有任何预警。

近日,美国路易斯安那大学拉斐特分校的两名研究员开发出了一种新的人工智能模型,最多能在患者癫痫发作前一个月就提前进行预测。

该模型的开发者 Hisham Daoud 表示,癫痫总是在没有任何前兆的情况下突然发作,这点可能对患者的心理产生严重的影响。考虑到这一因素,提前检测到癫痫发作可以极大改善患者的生活质量,并为他们留出足够的应对时间。

更重要的是,70% 的癫痫发作是可以通过药物控制的。

新型 AI 可提前一个月预测癫痫发作,成功率99.6%(来源:IEEE)

提前预知癫痫发作不是一个全新的概念。在此之前,已有研究小组研究出用脑电图测试分析大脑活动的方法,并利用收集的数据建立预测模型。

这种方法最明显的缺陷就是,每个人的大脑在活动时都有自己的独特模式,这一特点让预测工作变得更难进行。

与此同时,使用过去的预测方法需要手动收集患者的大脑活动模式,Daoud 认为这增加了模型的复杂性,这也是新的模型想要解决的问题。

研究者在 IEEE 上发表的文章上解释了新方法的大致思路,他将提取大脑特征以及分类的过程合并在一起,并交由一个自动化的系统处理,很大程度上简化了原先方法的过程,从而能够更加精准地预测癫痫发作,预测时间也提前了更多。

除此之外,研究人员还引入了一种新的分类方式,即深度学习算法收集了来自不同的电极点记录下的大脑活动特征,进一步提升模型的预测准确性。

然后,研究人员在波士顿儿童医院找到了 22 名患者,利用他们的长期脑电图数据,开发了相应的预测模型并进行测试。结果显示,直到癫痫发作前一个小时,该模型预测准确率达到了令人震惊的 99.6%,且误报率非常低,仅为每小时 0.004 次。

要达到如此效果,其实需要一些前期准备。Daoud 介绍道,他们需要在每个患者身上都对模型进行测试,才有可能在早期阶段即达到如此高的测试准确率。而训练过程则包括了在患者癫痫发作前后进行数小时的非侵入性脑电图检测。

在软件层面趋于完善之后,Daoud 表示,团队下一阶段将开发一个定制的计算机芯片以满足算法需求。他们的目标是设计一款高效、实用的硬件,其中内置了团队开发的算法,同时还能满足体积大小、功耗等要求,最终让患者能够在最舒适的体验中完成癫痫预测。

原始出处:

Daoud H, Bayoumi MA. Efficient Epileptic Seizure Prediction Based on Deep Learning.IEEE Trans Biomed Circuits Syst 2019 Oct;13(5):804-813




版权声明:
本网站所有注明“来源:梅斯医学”或“来源:MedSci原创”的文字、图片和音视频资料,版权均属于梅斯医学所有,非经授权,任何媒体、网站或个人不得转载,授权转载时须注明“来源:梅斯医学”。本网所有转载文章系出于传递更多信息之目的,且明确注明来源和作者,不希望被转载的媒体或个人可与我们联系,我们将立即进行删除处理。同时转载内容不代表本站立场。
在此留言

相关资讯

用代码治愈癌症?当微软程序员的人文关怀融入癌症治疗

得益于工业科技的发展,第一次工业革命,人类获得了蒸汽机;第二次工业革命,人类拥有了闪亮光明的电;第三次科技革命,人类开始走进互联网世界;进入21世纪的第四次“工业”革命,是以基因、虚拟现实、量子信息技术、清洁能源、生物技术为突破口的工业革命,人们获得AI、VR等各类新技术的同时,在医疗领域是否也能同样进入“无癌时代”呢?

“驯服猛兽”——AI已与医疗深度融合

大规模的技术投资和政府的推进力度使医疗领域将受到重大影响,其中,智能算法和智能机器人系统作用突出。

AI成影像标配,医生到底需要什么?大佬们向影像领域传达了什么?

MICCAI(Medical Image Computing and Computer Assisted Intervention)始于1998年的麻省理工学院,第一届开办时,参与学术交流的学者仅400人。时至今日,MICCAI已成为医学影像分析行业的顶级学术会议。据会方统计,本次大会上,全球各地总共2400多名学者来到了深圳,共同探索医学影像的发展。剧变不仅仅发生于参会人数的变化之上。从论文

AI与临床研究:研究设计、加速患者招募...AI如何提高研究效率?

1994年,乳腺外科医生Kevin Hughes开展了一项随机对照试验,探索早期乳腺癌患者术后使用他莫昔芬联合放疗的有效性。研究需招募70岁以上的患者,对肿瘤大小和类型都有明确要求,美国每年大约有4万名符合入组标准的女性,最终研究成功招募了636人,样本量已经足够,但是花了五年时间才入组完成。患者招募只是进行临床试验的诸多瓶颈之一。转化研究所所长Eric Topol表示:“医学研究在很多方面都

斯坦福大学专家:AI不过是医疗团队中的一名“新同事”

AI对医生和行医行为意味着什么?这个问题的答案可能很复杂。近日NEJM Catalyst采访了斯坦福大学临床卓越研究中心高级学者Nirav Shah,或许可以给医生提供新的认知角度。以下内容根据NEJM Catalyst采访原文编译而成。Tom Lee:您是否看好AI?Nirav Shah:我看好医疗AI,虽然我也有点害怕。与大多数其他行业不同,医疗领域新技术的发展和运用往往意味着更高的成本,

陈有信教授专访|AI在眼科领域有广阔前景

目前70%的眼科医生分布在大中城市中,但是70%的眼科患者却生活在基层,眼科医生的分布与群众对眼科诊疗的需求不匹配。怎样在现有体系中解决供需不平衡的问题?人工智能或许能解决部分问题。由中华医学会、中华医学会眼科学分会主办,江苏省医学会承办的中华医学会第二十四次全国眼科学术大会于2019年9月4-8日在苏州举行。在大会上,来自北京协和医院的陈有信教授以“人工智能在眼科的应用”为题,进行了精彩的发言。