Issue published April 15, 2024 Previous issue

On the cover: Mechanisms underlying mitotic and chromosomal defects in myelodysplastic syndromes

Luo et al. report that ectopic expression of transcription factor ONECUT3 is a driver for a complex karyotype in myelodysplastic syndromes via transcriptional activation of its target genes INCENP and CDCA8. Notably, dysregulation of chromosome passenger complex (CPC) caused mitotic defects, cytokinesis failure, and faulty chromosome segregation. The cover image is an artistic portrayal of ectopic ONECUT3-mediated dysplasia and mitotic defects. Image credit: Yingwan Luo and Hongyan Tong.

100th Anniversary Viewpoints
Review Series
Abstract

Infantile hemangioma (IH) is a benign vascular tumor that occurs in 5% of newborns. The tumor follows a life cycle of rapid proliferation in infancy, followed by slow involution in childhood. This unique life cycle has attracted the interest of basic and clinical scientists alike as a paradigm for vasculogenesis, angiogenesis, and vascular regression. Unanswered questions persist about the genetic and molecular drivers of the proliferating and involuting phases. The beta blocker propranolol usually accelerates regression of problematic IHs, yet its mechanism of action on vascular proliferation and differentiation is unclear. Some IHs fail to respond to beta blockers and regrow after discontinuation. Side effects occur and long-term sequelae of propranolol treatment are unknown. This poses clinical challenges and raises novel questions about the mechanisms of vascular overgrowth in IH.

Authors

Annegret Holm, John B. Mulliken, Joyce Bischoff

×

Abstract

Central conducting lymphatic anomaly (CCLA) is a complex lymphatic anomaly characterized by abnormalities of the central lymphatics and may present with nonimmune fetal hydrops, chylothorax, chylous ascites, or lymphedema. CCLA has historically been difficult to diagnose and treat; however, recent advances in imaging, such as dynamic contrast magnetic resonance lymphangiography, and in genomics, such as deep sequencing and utilization of cell-free DNA, have improved diagnosis and refined both genotype and phenotype. Furthermore, in vitro and in vivo models have confirmed genetic causes of CCLA, defined the underlying pathogenesis, and facilitated personalized medicine to improve outcomes. Basic, translational, and clinical science are essential for a bedside-to-bench and back approach for CCLA.

Authors

Luciana Daniela Garlisi Torales, Benjamin A. Sempowski, Georgia L. Krikorian, Kristina M. Woodis, Scott M. Paulissen, Christopher L. Smith, Sarah E. Sheppard

×

Abstract

Capillary malformation (CM), or port wine birthmark, is a cutaneous congenital vascular anomaly that occurs in 0.1%–2% of newborns. Patients with a CM localized on the forehead have an increased risk of developing a neurocutaneous disorder called encephalotrigeminal angiomatosis or Sturge-Weber syndrome (SWS), with complications including seizure, developmental delay, glaucoma, and vision loss. In 2013, a groundbreaking study revealed causative activating somatic mutations in the gene (GNAQ) encoding guanine nucleotide–binding protein Q subunit α (Gαq) in CM and SWS patient tissues. In this Review, we discuss the disease phenotype, the causative GNAQ mutations, and their cellular origin. We also present the endothelial Gαq-related signaling pathways, the current animal models to study CM and its complications, and future options for therapeutic treatment. Further work remains to fully elucidate the cellular and molecular mechanisms underlying the formation and maintenance of the abnormal vessels.

Authors

Adrienne M. Hammill, Elisa Boscolo

×
Commentaries
Abstract

N6-Methyladenosine (m6A), a prevalent posttranscriptional modification, plays an important role in cancer progression. Clear cell renal cell carcinoma (ccRCC) is chiefly associated with the loss of the von Hippel-Lindau (VHL) gene, encoding a component of the E3 ubiquitin ligase complex. In this issue of the JCI, Zhang and colleagues unveiled a function of VHL beyond its canonical role as an E3 ubiquitin ligase in regulating hypoxia-inducible factors (HIFs). It also governed m6A modification by orchestrating the assembly of m6A writer proteins METTL3 and METTL14, thereby stabilizing PIK3R3 mRNA. Mechanistically, PIK3R3 contributed to p85 ubiquitination, which restrained PI3K/AKT signaling and consequently impeded ccRCC growth in cell and mouse models. This discovery provides potential treatment targets in VHL-deficient ccRCCs.

Authors

Hyemin Lee, Li Zhuang, Boyi Gan

×

Abstract

Merkel cell carcinoma (MCC) is an aggressive, fast-growing, highly metastatic neuroendocrine skin cancer. The Merkel cell polyomavirus (MCPyV) is an oncogenic driver in the majority of MCC tumors. In this issue of the JCI, Hansen and authors report on their tracking of CD8+ T cells reactive to MCPyV T antigen (T-Ag) in the peripheral blood of 26 patients with MCC who were undergoing frontline anti–programmed cell death protein-1 (anti–PD-1) immunotherapy. They discovered unique T cell epitopes and used the power of bar-coded tetramers to portray immune checkpoint inhibitor–induced immunogenicity as a predictor of clinical response. These findings provide the foundation for therapeutic possibilities for MCC, including vaccines and adoptive T cell– and T cell receptor–driven (TCR-driven) treatments.

Authors

Michael K. Wong, Cassian Yee

×

Abstract

Cell and antibody therapies directed against surface molecules on B cells, e.g., CD19-targeting chimeric antigen receptor T cells (CD19 CAR-T), are now standard for patients with chemorefractory B cell acute lymphoblastic leukemias and other B cell malignancies. However, early relapse rates remain high. In this issue of the JCI, Aminov, Giricz, and colleagues revealed that leukemia cells resisting CD19-targeted therapy had reduced CD19 but also low CD22 expression and were sensitive to Bruton’s tyrosine kinase and/or MEK inhibition. Overall, their observations support the evolution of resistance following a Lamarckian model: the oncotherapy directly elicits adaptive, resistance-conferring reconfigurations, which are then inherited by daughter cells as epigenetic changes. The findings prompt reflection also on the broader role of epigenetics in decoupling of replication from lineage differentiation activation by the B cell lineage master transcription factor hub. Such oncogenesis and resistance mechanisms, being predictable and epigenetic, offer practical opportunities for intervention, potentially non-cross-resistant and safe vis-à-vis present cytotoxic and CAR-T treatments.

Authors

Yogen Saunthararajah

×
Research Letter
Abstract

Authors

Gianfranco Di Giuseppe, Laura Soldovieri, Gea Ciccarelli, Pietro Manuel Ferraro, Giuseppe Quero, Francesca Cinti, Umberto Capece, Simona Moffa, Enrico Celestino Nista, Antonio Gasbarrini, Andrea Mari, Sergio Alfieri, Vincenzo Tondolo, Alfredo Pontecorvi, Jens Juul Holst, Andrea Giaccari, Teresa Mezza

×
Research Articles
Abstract

RAD54 and BLM helicase play pivotal roles during homologous recombination repair (HRR) to ensure genome maintenance. BLM amino acids (aa 181–212) interact with RAD54 and enhance its chromatin remodeling activity. Functionally, this interaction heightens HRR, leading to a decrease in residual DNA damage in colon cancer cells. This contributes to chemoresistance in colon cancer cells against cisplatin, camptothecin, and oxaliplatin, eventually promoting tumorigenesis in preclinical colon cancer mouse models. ChIP-Seq analysis and validation revealed increased BLM and RAD54 corecruitment on the MRP2 promoter in camptothecin-resistant colon cancer cells, leading to BLM-dependent enhancement of RAD54-mediated chromatin remodeling. We screened the Prestwick small-molecule library, with the intent to revert camptothecin- and oxaliplatin-induced chemoresistance by disrupting the RAD54-BLM interaction. Three FDA/European Medicines Agency–approved candidates were identified that could disrupt this interaction. These drugs bound to RAD54, altered its conformation, and abrogated RAD54-BLM–dependent chromatin remodeling on G5E4 and MRP2 arrays. Notably, the small molecules also reduced HRR efficiency in resistant lines, diminished anchorage-independent growth, and hampered the proliferation of tumors generated using camptothecin- and oxaliplatin-resistant colon cancer cells in both xenograft and syngeneic mouse models in BLM-dependent manner. Therefore, the 3 identified small molecules can serve as possible viable candidates for adjunct therapy in colon cancer treatment.

Authors

Ekjot Kaur, Ritu Agrawal, Rimpy Arun, Vinoth Madhavan, Vivek Srivastava, Dilip Kumar, Pragyan Parimita Rath, Nitin Kumar, Sreekanth Vedagopuram, Nishant Pandey, Swati Priya, Patrick Legembre, Samudrala Gourinath, Avinash Bajaj, Sagar Sengupta

×

Abstract

Craniofacial anomalies, especially midline facial defects, are among the most common birth defects in patients and are associated with increased mortality or require lifelong treatment. During mammalian embryogenesis, specific instructions arising at genetic, signaling, and metabolic levels are important for stem cell behaviors and fate determination, but how these functionally relevant mechanisms are coordinated to regulate craniofacial morphogenesis remain unknown. Here, we report that bone morphogenetic protein (BMP) signaling in cranial neural crest cells (CNCCs) is critical for glycolytic lactate production and subsequent epigenetic histone lactylation, thereby dictating craniofacial morphogenesis. Elevated BMP signaling in CNCCs through constitutively activated ACVR1 (ca-ACVR1) suppressed glycolytic activity and blocked lactate production via a p53-dependent process that resulted in severe midline facial defects. By modulating epigenetic remodeling, BMP signaling–dependent lactate generation drove histone lactylation levels to alter essential genes of Pdgfra, thus regulating CNCC behavior in vitro as well as in vivo. These findings define an axis wherein BMP signaling controls a metabolic/epigenetic cascade to direct craniofacial morphogenesis, thus providing a conceptual framework for understanding the interaction between genetic and metabolic cues operative during embryonic development. These findings indicate potential preventive strategies of congenital craniofacial birth defects via modulating metabolic-driven histone lactylation.

Authors

Jingwen Yang, Lingxin Zhu, Haichun Pan, Hiroki Ueharu, Masako Toda, Qian Yang, Shawn A. Hallett, Lorin E. Olson, Yuji Mishina

×

Abstract

Administration of anti-RhD immunoglobulin (Ig) to decrease maternal alloimmunization (antibody-mediated immune suppression [AMIS]) was a landmark clinical development. However, IgG has potent immune-stimulatory effects in other settings (antibody-mediated immune enhancement [AMIE]). The dominant thinking has been that IgG causes AMIS for antigens on RBCs but AMIE for soluble antigens. However, we have recently reported that IgG against RBC antigens can cause either AMIS or AMIE as a function of an IgG subclass. Recent advances in mechanistic understanding have demonstrated that RBC alloimmunization requires the IFN-α/-β receptor (IFNAR) and is inhibited by the complement C3 protein. Here, we demonstrate the opposite for AMIE of an RBC alloantigen (IFNAR is not required and C3 enhances). RBC clearance, C3 deposition, and antigen modulation all preceded AMIE, and both CD4+ T cells and marginal zone B cells were required. We detected no significant increase in antigen-specific germinal center B cells, consistent with other studies of RBC alloimmunization that show extrafollicular-like responses. To the best of our knowledge, these findings provide the first evidence of an RBC alloimmunization pathway which is IFNAR independent and C3 dependent, thus further advancing our understanding of RBCs as an immunogen and AMIE as a phenomenon.

Authors

Arijita Jash, Thomas Pridmore, James B. Collins, Ariel M. Hay, Krystalyn E. Hudson, Chance John Luckey, James C. Zimring

×

Abstract

T cell acute lymphoblastic leukemia (T-ALL) is an aggressive immature T cell cancer. Mutations in IL7R have been analyzed genetically, but downstream effector functions such as STAT5A and STAT5B hyperactivation are poorly understood. Here, we studied the most frequent and clinically challenging STAT5BN642H driver in T cell development and immature T cell cancer onset and compared it with STAT5A hyperactive variants in transgenic mice. Enhanced STAT5 activity caused disrupted T cell development and promoted an early T cell progenitor–ALL phenotype, with upregulation of genes involved in T cell receptor (TCR) signaling, even in absence of surface TCR. Importantly, TCR pathway genes were overexpressed in human T-ALL and mature T cell cancers and activation of TCR pathway kinases was STAT5 dependent. We confirmed STAT5 binding to these genes using ChIP-Seq analysis in human T-ALL cells, which were sensitive to pharmacologic inhibition by dual STAT3/5 degraders or ZAP70 tyrosine kinase blockers in vitro and in vivo. We provide genetic and biochemical proof that STAT5A and STAT5B hyperactivation can initiate T-ALL through TCR pathway hijacking and suggest similar mechanisms for other T cell cancers. Thus, STAT5 or TCR component blockade are targeted therapy options, particularly in patients with chemoresistant clones carrying STAT5BN642H.

Authors

Tobias Suske, Helena Sorger, Gabriele Manhart, Frank Ruge, Nicole Prutsch, Mark W. Zimmerman, Thomas Eder, Diaaeldin I. Abdallah, Barbara Maurer, Christina Wagner, Susann Schönefeldt, Katrin Spirk, Alexander Pichler, Tea Pemovska, Carmen Schweicker, Daniel Pölöske, Emina Hubanic, Dennis Jungherz, Tony Andreas Müller, Myint Myat Khine Aung, Anna Orlova, Ha Thi Thanh Pham, Kerstin Zimmel, Thomas Krausgruber, Christoph Bock, Mathias Müller, Maik Dahlhoff, Auke Boersma, Thomas Rülicke, Roman Fleck, Elvin Dominic de Araujo, Patrick Thomas Gunning, Tero Aittokallio, Satu Mustjoki, Takaomi Sanda, Sylvia Hartmann, Florian Grebien, Gregor Hoermann, Torsten Haferlach, Philipp Bernhard Staber, Heidi Anne Neubauer, Alfred Thomas Look, Marco Herling, Richard Moriggl

×

Abstract

Antitumor responses of CD8+ T cells are tightly regulated by distinct metabolic fitness. High levels of glutathione (GSH) are observed in the majority of tumors, contributing to cancer progression and treatment resistance in part by preventing glutathione peroxidase 4–dependent (GPX4-dependent) ferroptosis. Here, we show the necessity of adenosine A2A receptor (A2AR) signaling and the GSH/GPX4 axis in orchestrating metabolic fitness and survival of functionally competent CD8+ T cells. Activated CD8+ T cells treated ex vivo with simultaneous inhibition of A2AR and lipid peroxidation acquire a superior capacity to proliferate and persist in vivo, demonstrating a translatable means to prevent ferroptosis in adoptive cell therapy. Additionally, we identify a particular cluster of intratumoral CD8+ T cells expressing a putative gene signature of GSH metabolism (GMGS) in association with clinical response and survival across several human cancers. Our study addresses a key role of GSH/GPX4 and adenosinergic pathways in fine-tuning the metabolic fitness of antitumor CD8+ T cells.

Authors

Siqi Chen, Jie Fan, Ping Xie, Jihae Ahn, Michelle Fernandez, Leah K. Billingham, Jason Miska, Jennifer D. Wu, Derek A. Wainwright, Deyu Fang, Jeffrey A. Sosman, Yong Wan, Yi Zhang, Navdeep S. Chandel, Bin Zhang

×

Abstract

Adoptive transfer of T cell receptor–engineered T cells (TCR-T) is a promising strategy for immunotherapy against solid tumors. However, the potential of CD4+ T cells in mediating tumor regression has been neglected. Nasopharyngeal cancer is consistently associated with EBV. Here, to evaluate the therapeutic potential of CD4 TCR-T in nasopharyngeal cancer, we screened for CD4 TCRs recognizing EBV nuclear antigen 1 (EBNA1) presented by HLA-DP5. Using mass spectrometry, we identified EBNA1567–581, a peptide naturally processed and presented by HLA-DP5. We isolated TCR135, a CD4 TCR with high functional avidity, that can function in both CD4+ and CD8+ T cells and recognizes HLA-DP5–restricted EBNA1567–581. TCR135-transduced T cells functioned in two ways: directly killing HLA-DP5+EBNA1+ tumor cells after recognizing EBNA1 presented by tumor cells and indirectly killing HLA-DP5–negative tumor cells after recognizing EBNA1 presented by antigen-presenting cells. TCR135-transduced T cells preferentially infiltrated into the tumor microenvironment and significantly inhibited tumor growth in xenograft nasopharyngeal tumor models. Additionally, we found that 62% of nasopharyngeal cancer patients showed 50%–100% expression of HLA-DP on tumor cells, indicating that nasopharyngeal cancer is well suited for CD4 TCR-T therapy. These findings suggest that TCR135 may provide a new strategy for EBV-related nasopharyngeal cancer immunotherapy in HLA-DP5+ patients.

Authors

Chenwei Wang, Jiewen Chen, Jingyao Li, Zhihong Xu, Lihong Huang, Qian Zhao, Lei Chen, Xiaolong Liang, Hai Hu, Gang Li, Chengjie Xiong, Bin Wu, Hua You, Danyi Du, Xiaoling Wang, Hongle Li, Zibing Wang, Lin Chen

×

Abstract

Chromosomal instability is a prominent biological feature of myelodysplastic syndromes (MDS), with over 50% of patients with MDS harboring chromosomal abnormalities or a complex karyotype (CK). Despite this observation, the mechanisms underlying mitotic and chromosomal defects in MDS remain elusive. In this study, we identified ectopic expression of the transcription factor ONECUT3, which is associated with CKs and poorer survival outcomes in MDS. ONECUT3-overexpressing cell models exhibited enrichment of several notable pathways, including signatures of sister chromosome exchange separation and mitotic nuclear division with the upregulation of INCENP and CDCA8 genes. Notably, dysregulation of chromosome passenger complex (CPC) accumulation, besides the cell equator and midbody, during mitotic phases consequently caused cytokinesis failure and defective chromosome segregation. Mechanistically, the homeobox (HOX) domain of ONECUT3, serving as the DNA binding domain, occupied the unique genomic regions of INCENP and CDCA8 and transcriptionally activated these 2 genes. We identified a lead compound, C5484617, that functionally targeted the HOX domain of ONECUT3, inhibiting its transcriptional activity on downstream genes, and synergistically resensitized MDS cells to hypomethylating agents. This study revealed that ONECUT3 promoted chromosomal instability by transcriptional activation of INCENP and CDCA8, suggesting potential prognostic and therapeutic roles for targeting high-risk MDS patients with a CK.

Authors

Yingwan Luo, Xiaomin Feng, Wei Lang, Weihong Xu, Wei Wang, Chen Mei, Li Ye, Shuanghong Zhu, Lu Wang, Xinping Zhou, Huimin Zeng, Liya Ma, Yanling Ren, Jie Jin, Rongzhen Xu, Gang Huang, Hongyan Tong

×

Abstract

Clear cell renal cell carcinoma (ccRCC) is characterized by dysregulated hypoxia signaling and a tumor microenvironment (TME) highly enriched in myeloid and lymphoid cells. Loss of the von Hippel Lindau (VHL) gene is a critical early event in ccRCC pathogenesis and promotes stabilization of HIF. Whether VHL loss in cancer cells affects immune cells in the TME remains unclear. Using Vhl WT and Vhl-KO in vivo murine kidney cancer Renca models, we found that Vhl-KO tumors were more infiltrated by immune cells. Tumor-associated macrophages (TAMs) from Vhl-deficient tumors demonstrated enhanced in vivo glucose consumption, phagocytosis, and inflammatory transcriptional signatures, whereas lymphocytes from Vhl-KO tumors showed reduced activation and a lower response to anti–programmed cell death 1 (anti–PD-1) therapy in vivo. The chemokine CX3CL1 was highly expressed in human ccRCC tumors and was associated with Vhl deficiency. Deletion of Cx3cl1 in cancer cells decreased myeloid cell infiltration associated with Vhl loss to provide a mechanism by which Vhl loss may have contributed to the altered immune landscape. Here, we identify cancer cell–specific genetic features that drove environmental reprogramming and shaped the tumor immune landscape, with therapeutic implications for the treatment of ccRCC.

Authors

Melissa M. Wolf, Matthew Z. Madden, Emily N. Arner, Jackie E. Bader, Xiang Ye, Logan Vlach, Megan L. Tigue, Madelyn D. Landis, Patrick B. Jonker, Zaid Hatem, KayLee K. Steiner, Dakim K. Gaines, Bradley I. Reinfeld, Emma S. Hathaway, Fuxue Xin, M. Noor Tantawy, Scott M. Haake, Eric Jonasch, Alexander Muir, Vivian L. Weiss, Kathryn E. Beckermann, W. Kimryn Rathmell, Jeffrey C. Rathmell

×

Abstract

Staphylococcus aureus is a leading cause of biofilm-associated prosthetic joint infection (PJI). A primary contributor to infection chronicity is an expansion of granulocytic myeloid-derived suppressor cells (G-MDSCs), which are critical for orchestrating the antiinflammatory biofilm milieu. Single-cell sequencing and bioinformatic metabolic algorithms were used to explore the link between G-MDSC metabolism and S. aureus PJI outcome. Glycolysis and the hypoxia response through HIF1a were significantly enriched in G-MDSCs. Interfering with both pathways in vivo, using a 2-deoxyglucose nanopreparation and granulocyte-targeted Hif1a conditional KO mice, respectively, attenuated G-MDSC–mediated immunosuppression and reduced bacterial burden in a mouse model of S. aureus PJI. In addition, single-cell RNA–Seq (scRNA-Seq) analysis of granulocytes from PJI patients also showed an enrichment in glycolysis and hypoxia-response genes. These findings support the importance of a glycolysis/HIF1a axis in promoting G-MDSC antiinflammatory activity and biofilm persistence during PJI.

Authors

Christopher M. Horn, Prabhakar Arumugam, Zachary Van Roy, Cortney E. Heim, Rachel W. Fallet, Blake P. Bertrand, Dhananjay Shinde, Vinai C. Thomas, Svetlana G. Romanova, Tatiana K. Bronich, Curtis W. Hartman, Kevin L. Garvin, Tammy Kielian

×

Abstract

BACKGROUND Persistent controllers (PCs) maintain antiretroviral-free HIV-1 control indefinitely over time, while transient controllers (TCs) eventually lose virological control. It is essential to characterize the quality of the HIV reservoir in terms of these phenotypes in order to identify the factors that lead to HIV progression and to open new avenues toward an HIV cure.METHODS The characterization of HIV-1 reservoir from peripheral blood mononuclear cells was performed using next-generation sequencing techniques, such as full-length individual and matched integration site proviral sequencing (FLIP-Seq; MIP-Seq).RESULTS PCs and TCs, before losing virological control, presented significantly lower total, intact, and defective proviruses compared with those of participants on antiretroviral therapy (ART). No differences were found in total and defective proviruses between PCs and TCs. However, intact provirus levels were lower in PCs compared with TCs; indeed the intact/defective HIV-DNA ratio was significantly higher in TCs. Clonally expanded intact proviruses were found only in PCs and located in centromeric satellite DNA or zinc-finger genes, both associated with heterochromatin features. In contrast, sampled intact proviruses were located in permissive genic euchromatic positions in TCs.CONCLUSIONS These results suggest the need for, and can give guidance to, the design of future research to identify a distinct proviral landscape that may be associated with the persistent control of HIV-1 without ART.FUNDING Instituto de Salud Carlos III (FI17/00186, FI19/00083, MV20/00057, PI18/01532, PI19/01127 and PI22/01796), Gilead Fellowships (GLD22/00147). NIH grants AI155171, AI116228, AI078799, HL134539, DA047034, MH134823, amfAR ARCHE and the Bill and Melinda Gates Foundation.

Authors

Carmen Gasca-Capote, Xiaodong Lian, Ce Gao, Isabelle C. Roseto, María Reyes Jiménez-León, Gregory Gladkov, María Inés Camacho-Sojo, Alberto Pérez-Gómez, Isabel Gallego, Luis E. Lopez-Cortes, Sara Bachiller, Joana Vitalle, Mohamed Rafii-El-Idrissi Benhnia, Francisco J. Ostos, Antonio R. Collado-Romacho, Jesús Santos, Rosario Palacios, Cristina Gomez-Ayerbe, Leopoldo Muñoz-Medina, Andrés Ruiz-Sancho, Mario Frias, Antonio Rivero-Juarez, Cristina Roca-Oporto, Carmen Hidalgo-Tenorio, Anna Rull, Julian Olalla, Miguel A. Lopez-Ruz, Francesc Vidal, Consuelo Viladés, Andrea Mastrangelo, Matthias Cavassini, Nuria Espinosa, Matthieu Perreau, Joaquin Peraire, Antonio Rivero, Luis F. López-Cortes, Mathias Lichterfeld, Xu G. Yu, Ezequiel Ruiz-Mateos

×

Abstract

SARS-CoV-2 infection of the upper airway and the subsequent immune response are early, critical factors in COVID-19 pathogenesis. By studying infection of human biopsies in vitro and in a hamster model in vivo, we demonstrated a transition in nasal tropism from olfactory to respiratory epithelium as the virus evolved. Analyzing each variant revealed that SARS-CoV-2 WA1 or Delta infect a proportion of olfactory neurons in addition to the primary target sustentacular cells. The Delta variant possessed broader cellular invasion capacity into the submucosa, while Omicron displayed enhanced nasal respiratory infection and longer retention in the sinonasal epithelium. The olfactory neuronal infection by WA1 and the subsequent olfactory bulb transport via axon were more pronounced in younger hosts. In addition, the observed viral clearance delay and phagocytic dysfunction in aged olfactory mucosa were accompanied by a decline of phagocytosis-related genes. Further, robust basal stem cell activation contributed to neuroepithelial regeneration and restored ACE2 expression postinfection. Together, our study characterized the nasal tropism of SARS-CoV-2 strains, immune clearance, and regeneration after infection. The shifting characteristics of viral infection at the airway portal provide insight into the variability of COVID-19 clinical features, particularly long COVID, and may suggest differing strategies for early local intervention.

Authors

Mengfei Chen, Andrew Pekosz, Jason S. Villano, Wenjuan Shen, Ruifeng Zhou, Heather Kulaga, Zhexuan Li, Amy Smith, Asiana Gurung, Sarah E. Beck, Kenneth W. Witwer, Joseph L. Mankowski, Murugappan Ramanathan Jr, Nicholas R. Rowan, Andrew P. Lane

×

Abstract

While therapies targeting CD19 by antibodies, chimeric antigen receptor T cells (CAR-T), and T cell engagers have improved the response rates in B cell malignancies, the emergence of resistant cell populations with low CD19 expression can lead to relapsed disease. We developed an in vitro model of adaptive resistance facilitated by chronic exposure of leukemia cells to a CD19 immunotoxin. Single-cell RNA-Seq (scRNA-Seq) showed an increase in transcriptionally distinct CD19lo populations among resistant cells. Mass cytometry demonstrated that CD22 was also decreased in these CD19lo-resistant cells. An assay for transposase-accessible chromatin with sequencing (ATAC-Seq) showed decreased chromatin accessibility at promoters of both CD19 and CD22 in the resistant cell populations. Combined loss of both CD19 and CD22 antigens was validated in samples from pediatric and young adult patients with B cell acute lymphoblastic leukemia (B-ALL) that relapsed after CD19 CAR-T–targeted therapy. Functionally, resistant cells were characterized by slower growth and lower basal levels of MEK activation. CD19lo resistant cells exhibited preserved B cell receptor signaling and were more sensitive to both Bruton’s tyrosine kinase (BTK) and MEK inhibition. These data demonstrate that resistance to CD19 immunotherapies can result in decreased expression of both CD19 and CD22 and can result in dependency on BTK pathways.

Authors

Sarah Aminov, Orsi Giricz, David T. Melnekoff, R. Alejandro Sica, Veronika Polishchuk, Cristian Papazoglu, Bonnie Yates, Hao-Wei Wang, Srabani Sahu, Yanhua Wang, Shanisha Gordon-Mitchell, Violetta V. Leshchenko, Carolina Schinke, Kith Pradhan, Srinivas Aluri, Moah Sohn, Stefan K. Barta, Beamon Agarwal, Mendel Goldfinger, Ioannis Mantzaris, Aditi Shastri, William Matsui, Ulrich Steidl, Joshua D. Brody, Nirali N. Shah, Samir Parekh, Amit Verma

×

Abstract

N6-Methyladenosine (m6A) is the most abundant posttranscriptional modification, and its contribution to cancer evolution has recently been appreciated. Renal cancer is the most common adult genitourinary cancer, approximately 85% of which is accounted for by the clear cell renal cell carcinoma (ccRCC) subtype characterized by VHL loss. However, it is unclear whether VHL loss in ccRCC affects m6A patterns. In this study, we demonstrate that VHL binds and promotes METTL3/METTL14 complex formation while VHL depletion suppresses m6A modification, which is distinctive from its canonical E3 ligase role. m6A RNA immunoprecipitation sequencing (RIP-Seq) coupled with RNA-Seq allows us to identify a selection of genes whose expression may be regulated by VHL-m6A signaling. Specifically, PIK3R3 is identified to be a critical gene whose mRNA stability is regulated by VHL in a m6A-dependent but HIF-independent manner. Functionally, PIK3R3 depletion promotes renal cancer cell growth and orthotopic tumor growth while its overexpression leads to decreased tumorigenesis. Mechanistically, the VHL-m6A–regulated PIK3R3 suppresses tumor growth by restraining PI3K/AKT activity. Taken together, we propose a mechanism by which VHL regulates m6A through modulation of METTL3/METTL14 complex formation, thereby promoting PIK3R3 mRNA stability and protein levels that are critical for regulating ccRCC tumorigenesis.

Authors

Cheng Zhang, Miaomiao Yu, Austin J. Hepperla, Zhao Zhang, Rishi Raj, Hua Zhong, Jin Zhou, Lianxin Hu, Jun Fang, Hongyi Liu, Qian Liang, Liwei Jia, Chengheng Liao, Sichuan Xi, Jeremy M. Simon, Kexin Xu, Zhijie Liu, Yunsun Nam, Payal Kapur, Qing Zhang

×

Abstract

Loss of arterial smooth muscle cells (SMCs) and abnormal accumulation of the extracellular domain of the NOTCH3 receptor (Notch3ECD) are the 2 core features of CADASIL, a common cerebral small vessel disease caused by highly stereotyped dominant mutations in NOTCH3. Yet the relationship between NOTCH3 receptor activity, Notch3ECD accumulation, and arterial SMC loss has remained elusive, hampering the development of disease-modifying therapies. Using dedicated histopathological and multiscale imaging modalities, we could detect and quantify previously undetectable CADASIL-driven arterial SMC loss in the CNS of mice expressing the archetypal Arg169Cys mutation. We found that arterial pathology was more severe and Notch3ECD accumulation greater in transgenic mice overexpressing the mutation on a wild-type Notch3 background (TgNotch3R169C) than in knockin Notch3R170C/R170C mice expressing this mutation without a wild-type Notch3 copy. Notably, expression of Notch3-regulated genes was essentially unchanged in TgNotch3R169C arteries. We further showed that wild-type Notch3ECD coaggregated with mutant Notch3ECD and that elimination of 1 copy of wild-type Notch3 in TgNotch3R169C was sufficient to attenuate Notch3ECD accumulation and arterial pathology. These findings suggest that Notch3ECD accumulation, involving mutant and wild-type NOTCH3, is a major driver of arterial SMC loss in CADASIL, paving the way for NOTCH3-lowering therapeutic strategies.

Authors

Nicolas Dupré, Florian Gueniot, Valérie Domenga-Denier, Virginie Dubosclard, Christelle Nilles, David Hill-Eubanks, Christelle Morgenthaler-Roth, Mark T. Nelson, Céline Keime, Lydia Danglot, Anne Joutel

×

Abstract

Merkel cell carcinoma (MCC) is a highly immunogenic skin cancer primarily induced by Merkel cell polyomavirus, which is driven by the expression of the oncogenic T antigens (T-Ags). Blockade of the programmed cell death protein-1 (PD-1) pathway has shown remarkable response rates, but evidence for therapy-associated T-Ag–specific immune response and therapeutic strategies for the nonresponding fraction are both limited. We tracked T-Ag–reactive CD8+ T cells in peripheral blood of 26 MCC patients under anti-PD1 therapy, using DNA-barcoded pMHC multimers, displaying all peptides from the predicted HLA ligandome of the oncoproteins, covering 33 class I haplotypes. We observed a broad T cell recognition of T-Ags, including identification of 20 T-Ag–derived epitopes we believe to be novel. Broadening of the T-Ag recognition profile and increased T cell frequencies during therapy were strongly associated with clinical response and prolonged progression-free survival. T-Ag–specific T cells could be further boosted and expanded directly from peripheral blood using artificial antigen-presenting scaffolds, even in patients with no detectable T-Ag–specific T cells. These T cells provided strong tumor-rejection capacity while retaining a favorable phenotype for adoptive cell transfer. These findings demonstrate that T-Ag–specific T cells are associated with the clinical outcome to PD-1 blockade and that Ag-presenting scaffolds can be used to boost such responses.

Authors

Ulla Kring Hansen, Candice D. Church, Ana Micaela Carnaz Simões, Marcus Svensson Frej, Amalie Kai Bentzen, Siri A. Tvingsholm, Jürgen C. Becker, Steven P. Fling, Nirasha Ramchurren, Suzanne L. Topalian, Paul T. Nghiem, Sine Reker Hadrup

×

Abstract

BACKGROUND Weakly virulent environmental mycobacteria (EM) can cause severe disease in HLA-DRB1*15:02 or 16:02 adults harboring neutralizing anti-IFN-γ autoantibodies (nAIGAs). The overall prevalence of nAIGAs in the general population is unknown, as are the penetrance of nAIGAs in HLA-DRB1*15:02 or 16:02 individuals and the proportion of patients with unexplained, adult-onset EM infections carrying nAIGAs.METHODS This study analyzed the detection and neutralization of anti-IFN-γ autoantibodies (auto-Abs) from 8,430 healthy individuals of the general population, 257 HLA-DRB1*15:02 or 16:02 carriers, 1,063 patients with autoimmune disease, and 497 patients with unexplained severe disease due to EM.RESULTS We found that anti-IFN-γ auto-Abs detected in 4,148 of 8,430 healthy individuals (49.2%) from the general population of an unknown HLA-DRB1 genotype were not neutralizing. Moreover, we did not find nAIGAs in 257 individuals carrying HLA-DRB1* 15:02 or 16:02. Additionally, nAIGAs were absent in 1,063 patients with an autoimmune disease. Finally, 7 of 497 patients (1.4%) with unexplained severe disease due to EM harbored nAIGAs.CONCLUSION These findings suggest that nAIGAs are isolated and that their penetrance in HLA-DRB1*15:02 or 16:02 individuals is low, implying that they may be triggered by rare germline or somatic variants. In contrast, the risk of mycobacterial disease in patients with nAIGAs is high, confirming that these nAIGAs are the cause of EM disease.FUNDING The Laboratory of Human Genetics of Infectious Diseases is supported by the Howard Hughes Medical Institute, the Rockefeller University, the St. Giles Foundation, the National Institutes of Health (NIH) (R01AI095983 and U19AIN1625568), the National Center for Advancing Translational Sciences (NCATS), the NIH Clinical and Translational Science Award (CTSA) program (UL1 TR001866), the French National Research Agency (ANR) under the “Investments for the Future” program (ANR-10-IAHU-01), the Integrative Biology of Emerging Infectious Diseases Laboratory of Excellence (ANR-10-LABX-62-IBEID), ANR-GENMSMD (ANR-16-CE17-0005-01), ANR-MAFMACRO (ANR-22-CE92-0008), ANRSECTZ170784, the French Foundation for Medical Research (FRM) (EQU201903007798), the ANRS-COV05, ANR GENVIR (ANR-20-CE93-003), and ANR AI2D (ANR-22-CE15-0046) projects, the ANR-RHU program (ANR-21-RHUS-08-COVIFERON), the European Union’s Horizon 2020 research and innovation program under grant agreement no. 824110 (EASI-genomics), the Square Foundation, Grandir - Fonds de solidarité pour l’enfance, the Fondation du Souffle, the SCOR Corporate Foundation for Science, the Battersea & Bowery Advisory Group, William E. Ford, General Atlantic’s Chairman and Chief Executive Officer, Gabriel Caillaux, General Atlantic’s Co-President, Managing Director, and Head of business in EMEA, and the General Atlantic Foundation, Institut National de la Santé et de la Recherche Médicale (INSERM) and of Paris Cité University. JR was supported by the INSERM PhD program for doctors of pharmacy (poste d’accueil INSERM). JR and TLV were supported by the Bettencourt-Schueller Foundation and the MD-PhD program of the Imagine Institute. MO was supported by the David Rockefeller Graduate Program, the Funai Foundation for Information Technology (FFIT), the Honjo International Scholarship Foundation (HISF), and the New York Hideyo Noguchi Memorial Society (HNMS).

Authors

Jessica N. Peel, Rui Yang, Tom Le Voyer, Adrian Gervais, Jérémie Rosain, Paul Bastard, Anish Behere, Axel Cederholm, Aaron Bodansky, Yoann Seeleuthner, Clément Conil, Jing-Ya Ding, Wei-Te Lei, Lucy Bizien, Camille Soudee, Mélanie Migaud, Masato Ogishi, Ahmad Yatim, Danyel Lee, Jonathan Bohlen, Thomas Perpoint, Laura Perez, Fernando Messina, Roxana Genet, Ludovic Karkowski, Mathieu Blot, Emmanuel Lafont, Laurie Toullec, Claire Goulvestre, Souad Mehlal-Sedkaoui, Jérôme Sallette, Fernando Martin, Anne Puel, Emmanuelle Jouanguy, CONSTANCES cohort, 3C-Dijon Study, Etablissement du Sang study group, Mark S. Anderson, Nils Landegren, Pierre Tiberghien, Laurent Abel, Stéphanie Boisson-Dupuis, Jacinta Bustamante, Cheng-Lung Ku, Jean-Laurent Casanova

×
Erratum
Abstract

Authors

Ane Korff, Xiaojing Yang, Kevin O’Donovan, Abner Gonzalez, Brett J.W. Teubner, Haruko Nakamura, James Messing, Fen Yang, Alexandre F. Carisey, Yong-Dong Wang, Tushar Patni, Heather Sheppard, Stanislav S. Zakharenko, Yuh Min Chook, J. Paul Taylor, Hong Joo Kim

×
Corrigenda
Abstract

Authors

Nicolas Skuli, Amar J. Majmundar, Bryan L. Krock, Rickson C. Mesquita, Lijoy K. Mathew, Zachary L. Quinn, Anja Runge, Liping Liu, Meeri N. Kim, Jiaming Liang, Steven Schenkel, Arjun G. Yodh, Brian Keith, M. Celeste Simon

×

Abstract

Authors

Yao Zhan, Jun Guo, William Yang, Christophe Goncalves, Tomasz Rzymski, Agnieszka Dreas, Eliza Żyłkiewicz, Maciej Mikulski, Krzysztof Brzózka, Aniela Golas, Yan Kong, Meng Ma, Fan Huang, Bonnie Huor, Qianyu Guo, Sabrina Daniela da Silva, Jose Torres, Yutian Cai, Ivan Topisirovic, Jie Su, Krikor Bijian, Moulay A. Alaoui-Jamali, Sidong Huang, Fabrice Journe, Ghanem E. Ghanem, Wilson H. Miller Jr., Sonia V. del Rincón

×

Abstract

Authors

Ke Li, Wei Liu, Hang Yu, Jiwei Chen, Wenxuan Tang, Jianpeng Wang, Ming Qi, Yuyun Sun, Xiaoping Xu, Ji Zhang, Xinxiang Li, Weijian Guo, Xiaoling Li, Shaoli Song, Shuang Tang

×

In-Press Preview - More

Abstract

Renal interstitial fibrosis is an important mechanism in the progression of chronic kidney disease (CKD) to end-stage kidney disease. However, we lack specific treatments to slow or halt renal fibrosis. Ribosome profiling identified upregulation of a secreted micropeptide, C4orf48 (Cf48), in mouse diabetic nephropathy. Cf48 RNA and protein levels were upregulated in tubular epithelial cells in human and experimental CKD. Serum Cf48 levels were increased in human CKD and correlated with loss of kidney function, increasing CKD stage, and the degree of active interstitial fibrosis. Cf48 overexpression in mice accelerated renal fibrosis, while Cf48 gene deletion or knockdown by antisense oligonucleotides significantly reduced renal fibrosis in CKD models. In vitro, recombinant Cf48 (rCf48) enhanced TGF-β1-induced fibrotic responses in renal fibroblasts and epithelial cells independent of Smad3 phosphorylation. Cellular uptake of Cf48 and its pro-fibrotic response in fibroblasts operated via the transferrin receptor. RNA immunoprecipitation-sequencing identified Cf48 binding to mRNA of genes involved in the fibrotic response, including Serpine1, Acta2, Ccn2, and Col4a1. rCf48 binds to the 3′-untranslated region of Serpine1 and increases mRNA half-life. We identify the secreted Cf48 micropeptide as a potential enhancer of renal fibrosis which operates as an RNA-binding peptide to promote the production of extracellular matrix.

Authors

Jiayi Yang, Hongjie Zhuang, Jinhua Li, Ana B. Nunez-Nescolarde, Ning Luo, Huiting Chen, Andy Li, Xinli Qu, Qing Wang, Jinjin Fan, Xiaoyan Bai, Zhiming Ye, Bing Gu, Yue Meng, Xingyuan Zhang, Di Wu, Youyang Sia, Xiaoyun Jiang, Wei Chen, Alexander N. Combes, David J. Nikolic-Paterson, Xueqing Yu

×

Abstract

Just as the androgen receptor (AR), the estrogen receptor α (ERα) is expressed in the prostate and is thought to influence prostate cancer (PCa) biology. Yet, the incomplete understanding of ERα functions in PCa hinders our ability to fully comprehend its clinical relevance and restricts the repurposing of estrogen-targeted therapies for the treatment of this disease. Using two human PCa tissue microarray cohorts, we first demonstrated that nuclear ERα expression was heterogeneous among patients, being only detected in half of tumors. Positive nuclear ERα levels were correlated with disease recurrence, progression to metastatic PCa, and patient survival. Using in vitro and in vivo models of the normal prostate and PCa, bulk and single-cell RNA-Seq analyses revealed that estrogens partially mimic the androgen transcriptional response and induce specific biological pathways linked to proliferation and metabolism. Bioenergetic flux assays and metabolomics confirmed the regulation of cancer metabolism by estrogens, supporting proliferation. Using cancer cell lines and patient-derived organoids, selective estrogen receptor modulators, a pure anti-estrogen, and genetic approaches impaired cancer cell proliferation and growth in an ERα-dependent manner. Overall, our study revealed that, when expressed, ERα functionally reprograms PCa metabolism, is associated with disease progression, and could be targeted for therapeutic purposes.

Authors

Camille Lafront, Lucas Germain, Gabriel H. Campolina-Silva, Cindy Weidmann, Line Berthiaume, Hélène Hovington, Hervé Brisson, Cynthia Jobin, Lilianne Frégeau-Proulx, Raul Cotau, Kevin Gonthier, Aurélie Lacouture, Patrick Caron, Claire Ménard, Chantal Atallah, Julie Riopel, Éva Latulippe, Alain Bergeron, Paul Toren, Chantal Guillemette, Martin Pelletier, Yves Fradet, Clémence Belleannée, Frédéric Pouliot, Louis Lacombe, Éric Lévesque, Étienne Audet-Walsh

×

Abstract

Tissue regeneration is limited in several organs including the kidney, contributing to the high prevalence of kidney disease globally. However, evolutionary and physiological adaptive responses and the presence of renal progenitor cells suggest existing remodeling capacity. This study uncovered endogenous tissue remodeling mechanisms in the kidney that were activated by the loss of body fluid and salt and regulated by a unique niche of a minority renal cell type called the macula densa (MD). Here we identified neuronal differentiation features of MD cells that sense the local and systemic environment, secrete angiogenic, growth and extracellular matrix remodeling factors, cytokines and chemokines, and control resident progenitor cells. Serial intravital imaging, MD nerve growth factor receptor and Wnt mouse models and transcriptome analysis revealed cellular and molecular mechanisms of these MD functions. Human and therapeutic translation studies illustrated the clinical potential of MD factors including CCN1 as a urinary biomarker and therapeutic target in chronic kidney disease. The concept that a neuronally differentiated key sensory and regulatory cell type responding to organ-specific physiological inputs controls local progenitors to remodel or repair tissues may be applicable to other organs and diverse tissue regenerative therapeutic strategies.

Authors

Georgina Gyarmati, Urvi Nikhil Shroff, Anne Riquier-Brison, Dorinne Desposito, Wenjun Ju, Sean D. Stocker, Audrey Izuhara, Sachin Deepak, Alejandra Becerra Calderon, James L. Burford, Hiroyuki Kadoya, Ju-Young Moon, Yibu Chen, Markus M. Rinschen, Nariman Ahmadi, Lester Lau, Daniel Biemesderfer, Aaron W. James, Liliana Minichiello, Berislav Zlokovic, Inderbir S. Gill, Matthias Kretzler, János Peti-Peterdi

×

Abstract

Individuals with clonal hematopoiesis of indeterminate potential (CHIP) are at increased risk of aging related health conditions and all-cause mortality, but whether CHIP impacts risk of infection is much less clear. Using UK Biobank data, we revealed a positive association between CHIP and incident pneumonia in 438,421 individuals. We show that inflammation enhanced pneumonia risk, as CHIP carriers with a hypomorphic IL6 receptor polymorphism were protected. To better characterize the pathways of susceptibility, we challenged hematopoietic Tet Methylcytosine Dioxygenase 2 knockout (Tet2–/–) and floxed control mice (Tet2f/f) with Streptococcus pneumoniae. As with human CHIP carriers, Tet2–/– mice had hematopoietic abnormalities resulting in the expansion of inflammatory monocytes and neutrophils in peripheral blood. Yet, these cells were insufficient in defending against S. pneumoniae and resulted in increased pathology, impaired bacterial clearance, and higher mortality in Tet2–/– mice. We delineated the transcriptional landscape of Tet2–/– neutrophils and found that while inflammation-related pathways were upregulated in Tet2–/– neutrophils, migration and motility pathways were compromised. Using live-imaging techniques, we demonstrated impairments in motility, pathogen uptake and neutrophil extracellular trap (NET) formation by Tet2–/– neutrophils. Collectively, we show that CHIP is a risk factor for bacterial pneumonia related to innate immune impairments.

Authors

Candice Quin, Erica N. DeJong, Elina K. Cook, Yi Zhen Luo, Caitlyn Vlasschaert, Sanathan Sadh, Amy J.M. McNaughton, Marco M. Buttigieg, Jessica A Breznik, Allison E. Kennedy, Kevin Zhao, Jeffrey Mewburn, Kimberly J. Dunham-Snary, Charles C.T. Hindmarch, Alexander G. Bick, Stephen L. Archer, Michael J. Rauh, Dawn M.E. Bowdish

×

Abstract

BACKGROUND. The molecular signature of pediatric acute respiratory distress syndrome (ARDS) is poorly described, and the degree to which hyperinflammation or specific tissue injury contributes to outcomes is unknown. Therefore, we profiled inflammation and tissue injury dynamics over the first 7 days of ARDS, and associated specific biomarkers with mortality, persistent ARDS, and persistent multiple organ dysfunction syndrome (MODS). METHODS. In a single-center prospective cohort of intubated pediatric ARDS, we collected plasma on days 0, 3, and 7. Nineteen biomarkers reflecting inflammation, tissue injury, and damage associated molecular patterns were measured. We assessed the relationship between biomarkers and trajectories with mortality, persistent ARDS, or persistent MODS using multivariable mixed effect models. RESULTS. In 279 subjects (64 [23%] non-survivors), hyperinflammatory cytokines, tissue injury markers, and DAMPs were higher in non-survivors. Survivors and non-survivors showed different biomarker trajectories. IL-1α, sTNFR1, ANG2, and SPD increased in non-survivors, while DAMPs remained persistently elevated. ANG2 and P3NP were associated with persistent ARDS, whereas multiple cytokines, tissue injury markers, and DAMPs were associated with persistent MODS. Corticosteroid use did not impact the association of biomarker levels or trajectory with mortality. CONCLUSIONS. Pediatric ARDS survivors and non-survivors had distinct biomarker trajectories, with cytokines, endothelial and alveolar epithelial injury, and DAMPs elevated in non-survivors. Mortality markers overlapped with markers associated with persistent MODS, rather than persistent ARDS.

Authors

Nadir Yehya, Thomas J. Booth, Gnana D. Ardhanari, Jill M. Thompson, L.K. Metthew Lam, Jacob E. Till, Mark V. Mai, Garrett Keim, Daniel J. McKeone, E. Scott Halstead, Patrick Lahni, Brian M. Varisco, Wanding Zhou, Erica L. Carpenter, Jason D. Christie, Nilam S. Mangalmurti

×

Advertisement

JCI's 100th anniversary

JCI celebrates a century of publishing scientific discoveries with a special collection highlighting major innovations in medicine and key contributing mechanistic studies.

Review Series - More

Vascular Malformations

Series edited by Miikka Vikkula

Vascular malformations in arteries, veins, and lymphatic vessels occur in a broad range of conditions that vary widely in severity and presentation. Leveraging the mechanisms specific to each type of malformation will be essential for optimizing disease management. This review series, developed with series editor Miikka Vikkula, will span hemangioma, hereditary hemorrhagic telangiectasia, lymphatic abnormalities, cerebral small vessel disease, capillary malformations, and more, with reviews contributed by leading experts in each condition.

×