筛选条件 共查询到500条结果
排序方式
Evidence for dispersing 1D Majorana channels in an iron-based superconductor

期刊: SCIENCE, 2020; 367 (6473)

The possible realization of Majorana fermions as quasiparticle excitations in condensed-matter physics has created much excitement. Most studies have focused on Majorana bound states; however, propagating Majorana states with linear dispersion have also been predicted. Here, we report scanning tunneling spectroscopic measurements of crystalline domain walls (DWs) in FeSe0.45Te0.55. We located DWs across which the lattice structure shifts by half a unit cell. These DWs have a finite, flat density of states inside the superconducting gap, which is a hallmark of linearly dispersing modes in one dimension. This signature is absent in DWs in the related superconductor, FeSe, which is not in the topological phase. Our combined data are consistent with the observation of dispersing Majorana states at a p-phase shift DW in a proximitized topological material.

Evolution of carnivorous traps from planar leaves through simple shifts in gene expression

期刊: SCIENCE, 2020; 367 (6473)

Leaves vary from planar sheets and needle-like structures to elaborate cup-shaped traps. Here, we show that in the carnivorous plant Utricularia gibba, the upper leaf (adaxial) domain is restricted to a small region of the primordium that gives rise to the trap's inner layer. This restriction is necessary for trap formation, because ectopic adaxial activity at early stages gives radialized leaves and no traps. We present a model that accounts for the formation of both planar and nonplanar leaves through adaxial-abaxial domains of gene activity establishing a polarity field that orients growth. In combination with an orthogonal proximodistal polarity field, this system can generate diverse leaf forms and account for the multiple evolutionary origins of cup-shaped leaves through simple shifts in gene expression.

A single photonic cavity with two independent physical synthetic dimensions

期刊: SCIENCE, 2020; 367 (6473)

The concept of synthetic dimensions has generated interest in many branches of science, ranging from ultracold atomic physics to photonics, as it provides a versatile platform for realizing effective gauge potentials and topological physics. Previous experiments have augmented the real-space dimensionality by one additional physical synthetic dimension. In this study, we endow a single ring resonator with two independent physical synthetic dimensions. Our system consists of a temporally modulated ring resonator with spatial coupling between the clockwise and counterclockwise modes, creating a synthetic Hall ladder along the frequency and pseudospin degrees of freedom for photons propagating in the ring. We observe a wide variety of physics, including effective spin-orbit coupling, magnetic fields, spin-momentum locking, a Meissner-to-vortex phase transition, and signatures of topological chiral one-way edge currents, completely in synthetic dimensions. Our experiments demonstrate that higher-dimensional physics can be studied in simple systems by leveraging the concept of multiple simultaneous synthetic dimensions.

Oriented attachment induces fivefold twins by forming and decomposing high-energy grain boundaries

期刊: SCIENCE, 2020; 367 (6473)

Natural and synthetic nanoparticles composed of fivefold twinned crystal domains have distinct properties. The formation mechanism of these fivefold twinned nanoparticles is poorly understood. We used in situ high-resolution transmission electron microscopy combined with molecular dynamics simulations to demonstrate that fivefold twinning occurs through repeated oriented attachment of similar to 3-nanometer gold, platinum, and palladium nanoparticles. We discovered two different mechanisms for forming fivefold twinned nanoparticles that are driven by the accumulation and elimination of strain. This was accompanied by decomposition of grain boundaries and the formation of a special class of twins with a net strain of zero. These observations allowed us to develop a quantitative picture of the twinning process. The mechanisms provide guidance for controlling twin structures and morphologies across a wide range of materials.

Hydrophobic zeolite modification for in situ peroxide formation in methane oxidation to methanol

期刊: SCIENCE, 2020; 367 (6474)

Selective partial oxidation of methane to methanol suffers from low efficiency. Here, we report a heterogeneous catalyst system for enhanced methanol productivity in methane oxidation by in situ generated hydrogen peroxide at mild temperature (70 degrees C). The catalyst was synthesized by fixation of AuPd alloy nanoparticles within aluminosilicate zeolite crystals, followed by modification of the external surface of the zeolite with organosilanes. The silanes appear to allow diffusion of hydrogen, oxygen, and methane to the catalyst active sites, while confining the generated peroxide there to enhance its reaction probability. At 17.3% conversion of methane, methanol selectivity reached 92%, corresponding to methanol productivity up to 91.6 millimoles per gram of AuPd per hour.

Nearly quantized conductance plateau of vortex zero mode in an iron-based superconductor

期刊: SCIENCE, 2020; 367 (6474)

Majorana zero modes (MZMs) are spatially localized, zero-energy fractional quasiparticles with non-Abelian braiding statistics that hold promise for topological quantum computing. Owing to the particle-antiparticle equivalence, MZMs exhibit quantized conductance at low temperature. By using variable-tunnel-coupled scanning tunneling spectroscopy, we studied tunneling conductance of vortex bound states on FeTe0.55Se0.45 superconductors. We report observations of conductance plateaus as a function of tunnel coupling for zero-energy vortex bound states with values close to or even reaching the 2e(2)/h quantum conductance (where e is the electron charge and h is Planck's constant). By contrast, no plateaus were observed on either finite energy vortex bound states or in the continuum of electronic states outside the superconducting gap. This behavior of the zero-mode conductance supports the existence of MZMs in FeTe0.55Se0.45.

Observation of an isomerizing double-well quantum system in the condensed phase

期刊: SCIENCE, 2020; 367 (6474)

Molecular isomerization fundamentally involves quantum states bound within a potential energy function with multiple minima. For isolated gas-phase molecules, eigenstates well above the isomerization saddle points have been characterized. However, to observe the quantum nature of isomerization, systems in which transitions between the eigenstates occur-such as condensed-phase systems-must be studied. Efforts to resolve quantum states with spectroscopic tools are typically unsuccessful for such systems. An exception is CO adsorbed on NaCl(100), which is bound with the well-known OC-Na+ structure. We observe an unexpected upside-down isomer (CO-Na+) produced by infrared laser excitation and obtain well-resolved infrared fluorescence spectra from highly energetic vibrational states of both orientational isomers. This distinctive condensed-phase system is ideally suited to spectroscopic investigations of the quantum nature of isomerization.

Observation of hydrogen trapping at dislocations, grain boundaries, and precipitates

期刊: SCIENCE, 2020; 367 (6474)

Hydrogen embrittlement of high-strength steel is an obstacle for using these steels in sustainable energy production. Hydrogen embrittlement involves hydrogen-defect interactions at multiple-length scales. However, the challenge of measuring the precise location of hydrogen atoms limits our understanding. Thermal desorption spectroscopy can identify hydrogen retention or trapping, but data cannot be easily linked to the relative contributions of different microstructural features. We used cryo-transfer atom probe tomography to observe hydrogen at specific microstructural features in steels. Direct observation of hydrogen at carbon-rich dislocations and grain boundaries provides validation for embrittlement models. Hydrogen observed at an incoherent interface between niobium carbides and the surrounding steel provides direct evidence that these incoherent boundaries can act as trapping sites. This information is vital for designing embrittlement-resistant steels.

Fetal mast cells mediate postnatal allergic responses dependent on maternal IgE

期刊: SCIENCE, 2020; 370 (6519)

Mast cells (MCs) are central effector cells in allergic reactions that are often mediated by immunoglobulin E (IgE). Allergies commonly start at an early age, and both MCs and IgE are detectable in fetuses. However, the origin of fetal IgE and whether fetal MCs can degranulate in response to IgE-dependent activation are presently unknown. Here, we show that human and mouse fetal MCs phenotypically mature through pregnancy and can be sensitized by maternal IgE. IgE crossed the placenta, dependent on the fetal neonatal Fc receptor (FcRN), and sensitized fetal MCs for allergenspecific degranulation. Both passive and active prenatal sensitization conferred allergen sensitivity, resulting in postnatal skin and airway inflammation after the first allergen encounter. We report a role for MCs within the developing fetus and demonstrate that fetal MCs may contribute to antigen-specific vertical transmission of allergic disease.

Autosomal dominant VCP hypomorph mutation impairs disaggregation of PHF-tau

期刊: SCIENCE, 2020; 370 (6519)

Neurodegeneration in Alzheimer's disease (AD) is closely associated with the accumulation of pathologic tau aggregates in the form of neurofibrillary tangles. We found that a p.Asp395Gly mutation in VCP (valosin-containing protein) was associated with dementia characterized neuropathologically by neuronal vacuoles and neurofibrillary tangles. Moreover, VCP appeared to exhibit tau disaggregase activity in vitro, which was impaired by the p.Asp395Gly mutation. Additionally, intracerebral microinjection of pathologic tau led to increased tau aggregates in mice in which p.Asp395Gly VCP mice was knocked in, as compared with injected wild-type mice. These findings suggest that p.Asp395Gly VCP is an autosomal-dominant genetic mutation associated with neurofibrillary degeneration in part owing to reduced tau disaggregation, raising the possibility that VCP may represent a therapeutic target for the treatment of AD.

Architecture of the photosynthetic complex from a green sulfur bacterium

期刊: SCIENCE, 2020; 370 (6519)

The photosynthetic apparatus of green sulfur bacteria (GSB) contains a peripheral antenna chlorosome, light-harvesting Fenna-Matthews-Olson proteins (FMO), and a reaction center (GsbRC). We used cryo-electron microscopy to determine a 2.7-angstrom structure of the FMO-GsbRC supercomplex from Chlorobaculum tepidum. The GsbRC binds considerably fewer (bacterio) chlorophylls [(B)Chls] than other known type I RCs do, and the organization of (B)Chls is similar to that in photosystem II. Two BChl layers in GsbRC are not connected by Chls, as seen in other RCs, but associate with two carotenoid derivatives. Relatively long distances of 22 to 33 angstroms were observed between BChls of FMO and GsbRC, consistent with the inefficient energy transfer between these entities. The structure contains common features of both type I and type II RCs and provides insight into the evolution of photosynthetic RCs.

Integrated hearing and chewing modules decoupled in a Cretaceous stem therian mammal

期刊: SCIENCE, 2020; 367 (6475)

On the basis of multiple skeletal specimens from Liaoning, China, we report a new genus and species of Cretaceous stem therian mammal that displays decoupling of hearing and chewing apparatuses and functions. The auditory bones, including the surangular, have no bone contact with the ossified Meckel's cartilage; the latter is loosely lodged on the medial rear of the dentary. This configuration probably represents the initial morphological stage of the definitive mammalian middle ear. Evidence shows that hearing and chewing apparatuses have evolved in a modular fashion. Starting as an integrated complex in non-mammaliaform cynodonts, the two modules, regulated by similar developmental and genetic mechanisms, eventually decoupled during the evolution of mammals, allowing further improvement for more efficient hearing and mastication.

共500条页码: 1/34页15条/页