筛选条件 共查询到500条结果
排序方式
The Gut Microbiota and Oxidative Stress in Autism Spectrum Disorders (ASD)

期刊: OXIDATIVE MEDICINE AND CELLULAR LONGEVITY, 2020; 2020 ()

Autism spectrum disorders (ASDs) are a kind of neurodevelopmental disorder with rapidly increasing morbidity. In recent years, many studies have proposed a possible link between ASD and multiple environmental as well as genetic risk factors; nevertheless, recent studies have still failed to identify the specific pathogenesis. An analysis of the literature showed that oxidative stress and redox imbalance caused by high levels of reactive oxygen species (ROS) are thought to be integral parts of ASD pathophysiology. On the one hand, this review aims to elucidate the communications between oxidative stress, as a risk factor, and ASD. As such, there is also evidence to suggest that early assessment and treatment of antioxidant status are likely to result in improved long-term prognosis by disturbing oxidative stress in the brain to avoid additional irreversible brain damage. Accordingly, we will also discuss the possibility of novel therapies regarding oxidative stress as a target according to recent literature. On the other hand, this review suggests a definite relationship between ASD and an unbalanced gastrointestinal tract (GIT) microbiota (i.e., GIT dysbiosis). A variety of studies have concluded that the intestinal microbiota influences many aspects of human health, including metabolism, the immune and nervous systems, and the mucosal barrier. Additionally, the oxidative stress and GIT dysfunction in autistic children have both been reported to be related to mitochondrial dysfunction. What is the connection between them? Moreover, specific changes in the GIT microbiota are clearly observed in most autistic children, and the related mechanisms and the connection among ASD, the GIT microbiota, and oxidative stress are also discussed, providing a theory and molecular strategies for clinical practice as well as further studies.

Aescin Protects Neuron from Ischemia-Reperfusion Injury via Regulating the PRAS40/mTOR Signaling Pathway

期刊: OXIDATIVE MEDICINE AND CELLULAR LONGEVITY, 2020; 2020 ()

Ischemic stroke is one of the major causes of disability; widely use of endovascular thrombectomy or intravenous thrombolysis leads to more attention on ischemia-reperfusion injury (I/R injury). Aescin, a natural compound isolated from the seed of the horse chestnut, has been demonstrated anti-inflammatory and antiedematous effects previously. This study was aimed at determining whether aescin could induce protective effects against ischemia-reperfusion injury and exploring the underlying mechanisms in vitro. Primary cultured neurons were subjected to 2 hours of oxygen-glucose deprivation (OGD) followed by 24 hours of simulated reperfusion. Aescin, which worked in a dose-dependent manner, could significantly attenuate neuronal death and reduce lactate dehydrogenase (LDH) release after OGD and simulated reperfusion. Aescin treatment at a concentration of 50 mu g/ml provided protection with fewer side effects. Results showed that aescin upregulated the phosphorylation level of PRAS40 and proteins in the mTOR signaling pathway, including S6K and 4E-BP1. However, PRAS40 knockdown or rapamycin treatment was able to undermine and even abolish the protective effects of aescin; meanwhile, the levels of phosphorylation PRAS40 and proteins in the mTOR signaling pathway were obviously decreased. Hence, our study demonstrated that aescin provided neuronal protective effects against I/R injury through the PRAS40/mTOR signaling pathway in vitro. These results might contribute to the potential clinical application of aescin and provide a therapeutic target on subsequent cerebral I/R injury.

Shen-Hong-Tong-Luo Formula Attenuates Macrophage Inflammation and Lipid Accumulation through the Activation of the PPAR-gamma/LXR-alpha/ABCA1 Pathway

期刊: OXIDATIVE MEDICINE AND CELLULAR LONGEVITY, 2020; 2020 ()

Atherosclerosis (AS) is the killer of human health and longevity, which is majorly caused by oxidized lipoproteins that attack macrophages in the endarterium. The Shen-Hong-Tong-Luo (SHTL) formula has shown great clinical efficacy and vascular protective effect for over 30 years in China, to attenuate AS progression. However, its pharmacological mechanism needs more investigation. In this study, we first investigated the chemical composition of SHTL by fingerprint analysis using high-performance liquid chromatography. In primary mouse peritoneal macrophages induced by lipopolysaccharide (LPS), we found that SHTL pretreatment suppressed reactive oxygen species accumulation and reversed the increases of the inflammatory factors, TNF-alpha and IL-6. Moreover, lipid accumulation induced by oxidized low-density lipoprotein (Ox-LDL) in macrophages was inhibited by SHTL. Additionally, network pharmacology was used to predict the potential targets of SHTL as the PPAR-gamma/LXR-alpha/ABCA1 signaling pathway, which was validated in macrophages and ApoE(-/-)mice by histopathological staining, qPCR, and Western blot analysis. Importantly, the protective effect of SHTL in the LPS- and Ox-LDL-induced macrophages against inflammation and lipid accumulation was attenuated by GW9662, a PPAR-gamma antagonist, which confirmed the prediction results of network pharmacology. In summary, these results indicated that SHTL pretreatment reduced inflammation and lipid accumulation of macrophages by activating the PPAR-gamma/LXR-alpha/ABCA1 pathway, which may provide a new insight into the mechanism of SHTL in the suppression of AS progression.

Interaction of TPPP3 with VDAC1 Promotes Endothelial Injury through Activation of Reactive Oxygen Species

期刊: OXIDATIVE MEDICINE AND CELLULAR LONGEVITY, 2020; 2020 ()

Endothelial injury plays a critical role in the pathogenesis of cardiovascular disorders and metabolic-associated vascular complications which are the leading cause of death worldwide. However, the mechanism underlying endothelial dysfunction is not completely understood. The study is aimed at investigating the role of tubulin polymerization-promoting protein family member 3 (TPPP3) in palmitic acid- (PA-) induced endothelial injury. The effect of TPPP3 on human umbilical vein endothelial cells (HUVECs) was determined by evaluating apoptosis, tube formation, and reactive oxygen species (ROS) production. TPPP3 silencing inhibited PA overload-induced apoptosis and production of ROS, along with the alteration of apoptosis-related key proteins such as BCL-2 and Bax. Mechanically, voltage-dependent anion channel 1 (VDAC1) was identified as a novel functional binding partner of TPPP3, and TPPP3 promoted VDAC1 protein stability and its activity. Further studies indicated that TPPP3 could promote apoptosis, ROS production, tube formation, and proapoptotic protein expression and reduce antiapoptotic protein expression through increasing VDAC1 expression under mildly elevated levels of PA. Collectively, these results demonstrated that TPPP3 could promote PA-induced oxidative damage in HUVECs via a VDAC1-dependent pathway, suggesting that TPPP3 might be considered as a potential therapeutic target in vascular disease.

RiPerC Attenuates Cerebral Ischemia Injury through Regulation of miR-98/PIK3IP1/PI3K/AKT Signaling Pathway

期刊: OXIDATIVE MEDICINE AND CELLULAR LONGEVITY, 2020; 2020 ()

Background. Cerebral ischemic stroke is a refractory disease which seriously endangers human health. Remote ischemic perconditioning (RiPerC) by which the sublethal ischemic stimulus is administered during the ischemic event is beneficial after an acute stroke. However, the regulatory mechanism of RiPerC that relieves cerebral ischemic injury is still not completely clear.Methods. In the present study, we investigated the regulatory mechanism of RiPerC in a rat model of ischemia induced by the middle cerebral artery occlusion (MCAO). Forty-eight adult male Sprague-Dawley (SD) rats were injected intracerebroventricularly with miR-98 agomir, miR-98 antagomir, or their negative controls (agomir-NC, antagomir-NC) 2 h before MCAO or MCAO+RiPerC followed by animal behavior tests and infraction volume measurement at 24 h after MCAO. The expression of miR-98, PIK3IP1, and tight junction proteins in rat hippocampus and cerebral cortex tissues was detected by quantitative polymerase chain reaction (qPCR) and Western blot (WB). Enzyme-linked immunosorbent assay (ELISA) was used to assess the IL-1 beta, IL-6, and TNF-alpha levels in the rat serum.Results. The results showed that in MCAO group, the expression of PIK3IP1 was upregulated, but decreased after RiPerC treatment. Then, we found that PIK3IP1 was a potential target of miR-98. Treatment with miR-98 agomir decreased the infraction volume, reduced brain edema, and improved neurological functions compared to control rats. But treating with miR-98 antagomir in RiPerC group, the protective effect on cerebral ischemia injury was canceled.Conclusion. Our finding indicated that RiPerC inhibited the MCAO-induced expression of PIK3IP1 through upregulated miR-98, thereby reducing the apoptosis induced by PIK3IP1 through the PI3K/AKT signaling pathway, thus reducing the cerebral ischemia-reperfusion injury.

The Effect of Hedysarum multijugum Maxim.-Chuanxiong rhizoma Compound on Ischemic Stroke: A Research Based on Network and Experimental Pharmacology

期刊: OXIDATIVE MEDICINE AND CELLULAR LONGEVITY, 2020; 2020 ()

Background.Hedysarum multijugum Maxim.-Chuanxiong rhizomacompound (HCC) is a common herbal formula modified from Buyang Huanwu decoction. Clinical trials have demonstrated its therapeutic potential for ischemic stroke (IS). However, the mechanism of HCC remains unclear.Methods. The HCC's components were collected from the TCMSP database and TCM@Taiwan database. After that, the HCC's compound targets were predicted by PharmMapper. The IS-related genes were obtained from GeneCards, and OMIM and the protein-protein interaction (PPI) data of HCC's targets and IS genes were obtained from the String database. After that, the DAVID platform was applied for Gene Ontology (GO) enrichment analysis and pathway enrichment analysis and the Cytoscape 3.7.2 was utilized to construct and analyze the networks. Finally, a series of animal experiments were carried out to validate the prediction results of network pharmacology. The expressions of GRP78, p-PERK, and CHOP proteins and mRNAs in different time periods after HCC intervention were detected by Western blot, immunohistochemistry, and RT-qPCR.Results. A total of 440 potential targets and 388 IS genes were obtained. The results of HCC-IS PPI network analysis showed that HCC may regulate IS-related targets (such as ALB, AKT1, MMP9, IGF1, and CASP3), biological processes (such as endoplasmic reticulum stress, inflammation modules, hypoxia modules, regulation of neuronal apoptosis and proliferation, and angiogenesis), and signaling pathways (such as PI3K-Akt, FoxO, TNF, HIF-1, and Rap1 signaling). The animal experiments showed that HCC can improve the neurobehavioral scores and protect the neurons of IS rats (P<0.05). HCC inhibited the expression of p-PERK in the PERK pathway from 12 h after surgery, significantly promoted the expression of GRP78 protein, and inhibited the expression of CHOP protein after surgery, especially at 24 h after surgery (P<0.05). The results of RT-qPCR showed that HCC can significantly reduce the expression of CHOP mRNA in the neurons in the CA1 region of the hippocampus 72 h after MCAO (P<0.05).Conclusion. HCC may achieve a role in the treatment of IS by intervening in a series of targets, signaling pathways, and biological processes such as inflammation, oxidative stress, endoplasmic reticulum stress, and angiogenesis.

Sodium Tanshinone IIA Silate Exerts Microcirculation Protective Effects against Spinal Cord Injury In Vitro and In Vivo

期刊: OXIDATIVE MEDICINE AND CELLULAR LONGEVITY, 2020; 2020 ()

Spinal cord microcirculation involves functioning endothelial cells at the blood spinal cord barrier (BSCB) and maintains normal functioning of spinal cord neurons, axons, and glial cells. Protection of both the function and integrity of endothelial cells as well as the prevention of BSCB disruption may be a strong strategy for the treatment of spinal cord injury (SCI) cases. Sodium Tanshinone IIA silate (STS) is used for the treatment of coronary heart disease and improves microcirculation. Whether STS exhibits protective effects for SCI microcirculation is not yet clear. The purpose of this study is to investigate the protective effects of STS on oxygen-glucose deprivation- (OGD-) induced injury of spinal cord endothelial cells (SCMECs)in vitroand to explore effects on BSCB and neurovascular protectionin vivo. SCMECs were treated with various concentrations of STS (1 mu M, 3 mu M, and 10 mu M) for 24 h with or without OGD-induction. Cell viability, tube formation, migration, and expression of Notch signaling pathway components were evaluated. Histopathological evaluation (H&E), Nissl staining, BSCB permeability, and the expression levels of von Willebrand Factor (vWF), CD31, NeuN, and Notch signaling pathway components were analyzed. STS was found to improve SCMEC functions and reduce inflammatory mediators after OGD. STS also relieved histopathological damage, increased zonula occludens-1 (ZO-1), inhibited BSCB permeability, rescued microvessels, protected motor neuromas, and improved functional recovery in a SCI model. Moreover, we uncovered that the Notch signaling pathway plays an important role during these processes. These results indicated that STS protects microcirculation in SCI, which may be used as a therapeutic strategy for SCI in the future.

MicroRNA-31-5p Exacerbates Lipopolysaccharide-Induced Acute Lung Injury via Inactivating Cab39/AMPK alpha Pathway

期刊: OXIDATIVE MEDICINE AND CELLULAR LONGEVITY, 2020; 2020 ()

Acute lung injury (ALI) and the subsequent acute respiratory distress syndrome remain devastating diseases with high mortality rates and poor prognoses among patients in intensive care units. The present study is aimed at investigating the role and underlying mechanisms of microRNA-31-5p (miR-31-5p) on lipopolysaccharide- (LPS-) induced ALI. Mice were pretreated withmiR-31-5pagomir, antagomir, and their negative controls at indicated doses for 3 consecutive days, and then they received a single intratracheal injection of LPS (5 mg/kg) for 12 h to induce ALI. MH-S murine alveolar macrophage cell lines were cultured to further verify the role ofmiR-31-5pin vitro. For AMP-activated protein kinase alpha(AMPK alpha) and calcium-binding protein 39 (Cab39) inhibition, compound C or lentiviral vectors were used in vivo and in vitro. We observed an upregulation ofmiR-31-5pin lung tissue upon LPS injection.miR-31-5pantagomir alleviated, whilemiR-31-5pagomir exacerbated LPS-induced inflammation, oxidative damage, and pulmonary dysfunction in vivo and in vitro. Mechanistically,miR-31-5pantagomir activated AMPK alpha to exert the protective effects that were abrogated by AMPK alpha inhibition. Further studies revealed that Cab39 was required for AMPK alpha activation and pulmonary protection bymiR-31-5pantagomir. We provide the evidence that endogenousmiR-31-5pis a key pathogenic factor for inflammation and oxidative damage during LPS-induced ALI, which is related to Cab39-dependent inhibition of AMPK alpha.

Rh-CSF1 Attenuates Oxidative Stress and Neuronal Apoptosis via the CSF1R/PLCG2/PKA/UCP2 Signaling Pathway in a Rat Model of Neonatal HIE

期刊: OXIDATIVE MEDICINE AND CELLULAR LONGEVITY, 2020; 2020 ()

Oxidative stress (OS) and neuronal apoptosis are major pathological processes after hypoxic-ischemic encephalopathy (HIE). Colony stimulating factor 1 (CSF1), binding to CSF1 receptor (CSF1R), has been shown to reduce neuronal loss after hypoxic-ischemia- (HI-) induced brain injury. In the present study, we hypothesized that CSF1 could alleviate OS-induced neuronal degeneration and apoptosis through the CSF1R/PLCG2/PKA/UCP2 signaling pathway in a rat model of HI. A total of 127 ten-day old Sprague Dawley rat pups were used. HI was induced by right common carotid artery ligation with subsequent exposure to hypoxia for 2.5 h. Exogenous recombinant human CSF1 (rh-CSF1) was administered intranasally at 1 h and 24 h after HI. The CSF1R inhibitor, BLZ945, or phospholipase C-gamma 2 (PLCG2) inhibitor, U73122, was injected intraperitoneally at 1 h before HI induction. Brain infarct volume measurement, cliff avoidance test, righting reflex test, double immunofluorescence staining, western blot assessment, 8-OHdG and MitoSOX staining, Fluoro-Jade C staining, and TUNEL staining were used. Our results indicated that the expressions of endogenous CSF1, CSF1R, p-CSF1R, p-PLCG2, p-PKA, and uncoupling protein2 (UCP2) were increased after HI. CSF1 and CSF1R were expressed in neurons and astrocytes. Rh-CSF1 treatment significantly attenuated neurological deficits, infarct volume, OS, neuronal apoptosis, and degeneration at 48 h after HI. Moreover, activation of CSF1R by rh-CSF1 significantly increased the brain tissue expressions of p-PLCG2, p-PKA, UCP2, and Bcl2/Bax ratio, but reduced the expression of cleaved caspase-3. The neuroprotective effects of rh-CSF1 were abolished by BLZ945 or U73122. These results suggested that rh-CSF1 treatment attenuated OS-induced neuronal degeneration and apoptosis after HI, at least in part, through the CSF1R/PLCG2/PKA/UCP2 signaling pathway. Rh-CSF1 may serve as therapeutic strategy against brain damage in patients with HIE.

Caffeic Acid Phenethyl Ester Protects against Experimental Autoimmune Encephalomyelitis by Regulating T Cell Activities

期刊: OXIDATIVE MEDICINE AND CELLULAR LONGEVITY, 2020; 2020 ()

Multiple sclerosis (MS) is an autoimmune inflammatory disease of the central nervous system (CNS) characterized by progressive demyelination and disabling outcomes. CD4(+)T cells are the most critical driving factor of relapsing MS, but little improvement has been noted upon deletion of the whole T cell population. Caffeic acid phenethyl ester (CAPE), one of the main active compounds of propolis, exhibits potent antitumour, anti-inflammatory, and antioxidant properties by suppressing nuclear factor-kappa B (NF-kappa B) transactivation. To investigate the therapeutic potential of CAPE in MS, we studied the effects of CAPE on cytokine levels, T cells, and NF-kappa B activities and in an experimental MS animal model. The results showed that cerebrospinal fluid (CSF) from patients with relapsing MS is characterized by increased levels of proinflammatory cytokines/chemokines that preferentially skew towards T helper 1 (Th1) cytokines.In vitrostudies demonstrated that CAPE not only inhibited T cell proliferation and activation but also effectively modulated T cell subsets. Under both Th0- and Th1-polarizing conditions, the proportion of CD4(+)IFN-gamma(+)cells was downregulated, while CD4(+)Foxp3(+)cells were increased. Moreover, nuclear translocation of NF-kappa B p65 was inhibited by CAPE. In a murine experimental autoimmune encephalomyelitis model, prophylactic treatment with CAPE significantly decreased the disease incidence and severity. Compared to the vehicle group, mice pretreated with CAPE showed diminished inflammatory cell infiltration, microglia/macrophage activation, and demyelination injury. Additionally, CAPE pretreatment reduced the level of Th1 cells in both spleen and the CNS and increased regulatory T cells (Tregs) in the CNS. In conclusion, our results highlight the potential merit of CAPE in suppressing T cell activity mainly through targeting the pathogenic Th1 lineage, which may be beneficial for MS treatment.

Synergistic Carcinogenesis of HPV18 and MNNG in Het-1A Cells through p62-KEAP1-NRF2 and PI3K/AKT/mTOR Pathway

期刊: OXIDATIVE MEDICINE AND CELLULAR LONGEVITY, 2020; 2020 ()

N-methyl-N '-nitro-N-nitrosoguanidine is a clear carcinogen, increasing evidence that indicates an etiological role of human papillomavirus in esophageal carcinoma. Studies have reported the synergistic effect on environmental carcinogens and viruses in recent years. On the basis of establishing the malignant transformation model of Het-1A cells induced by synergistic of HPV18 and MNNG, this study was to explore the synergistic carcinogenesis of MNNG and HPV. Our research indicated that HPV&MNNG led to a significant increase in the protein-expression levels of c-Myc, cyclinD1, BCL-2, BAX, E-cadherin, N-cadherin, mTOR, LC3II, and p62, with concomitant decreases in p21 and LC3I. HPV18 and MNNG induced accumulation of p62 and its interaction with KEAP1, which promoted NRF2 nuclear translocation. p62 loss prevents growth and increases autophagy of malignant cells by activating KEAP1/NRF2-dependent antioxidative response. In addition, PI3K and p-AKT were stimulated by HPV&MNNG, and PI3K/AKT/mTOR is positively associated with cell proliferation, migration, invasion, and autophagy during malignant transformation. Taken together, MNNG&HPV regulates autophagy and further accelerates cell appreciation by activating the p62/KEAP1/NRF2 and PI3K/AKT/mTOR pathway. MNNG&HPV may improve Het-1A cell autophagy to contribute to excessive cell proliferation, reduced apoptosis, and protection from oxidative damage, thus accelerating the process of cell malignant transformation and leading to cancerous cells.

NFE2L2 Is a Potential Prognostic Biomarker and Is Correlated with Immune Infiltration in Brain Lower Grade Glioma: A Pan-Cancer Analysis

期刊: OXIDATIVE MEDICINE AND CELLULAR LONGEVITY, 2020; 2020 ()

Nuclear factor, erythroid 2 like 2 (NFE2L2, NRF2) is a transcription factor that regulates various antioxidant enzymes. It plays a vital physiological role in regulating oxidative stress and inflammatory response. However, the roles of NFE2L2 in human cancers are still unclear. Our study is aimed at analyzing the prognostic value of NFE2L2 in pan-cancer and at revealing the relationship between NFE2L2 expression and tumor immunity. The present study revealed that NFE2L2 was abnormally expressed and significantly correlated with mismatch repair (MMR) gene mutation levels and DNA methyltransferase expression in human pan-cancer. In particular, pan-cancer survival analysis indicated that NFE2L2 expression was associated with adverse outcomes-overall survival (OS), disease-specific survival (DSS), and progression-free interval (PFI)-in adrenocortical carcinoma (ACC), brain lower grade glioma (LGG), and pancreatic adenocarcinoma (PAAD) patients. A positive relationship was also found between NFE2L2 expression and immune infiltration, including B cells, CD4+ T cells, CD8+ T cells, neutrophils, macrophages, and dendritic cells, especially in breast invasive carcinoma (BRCA), colon adenocarcinoma (COAD), kidney renal clear cell carcinoma (KIRC), LGG, liver hepatocellular carcinoma (LIHC), and prostate adenocarcinoma (PRAD). Additionally, NFE2L2 expression was positively correlated with the immune score and the expression of immune checkpoint markers in LGG. In conclusion, these results indicate that transcription factor NFE2L2 is a potential prognostic biomarker and is correlated with immune infiltration in LGG.

Reactive Oxygen Species Induce Endothelial Differentiation of Liver Cancer Stem-Like Sphere Cells through the Activation of Akt/IKK Signaling Pathway

期刊: OXIDATIVE MEDICINE AND CELLULAR LONGEVITY, 2020; 2020 ()

Cancer stem cells (CSCs) from various cancers are able to transdifferentiate into endothelial cells and further form functional blood vessels, indicating another possible resistance mechanism to antiangiogenic agents. However, it remains unclear whether CSCs from hepatocellular carcinoma have the ability to differentiate into endothelial cells, and thus resulting in resistance to antiangiogenic therapy targeting VEGF. Reactive oxygen species (ROS) are involved in the self-renewal and differentiation of CSCs, yet, their role in endothelial differentiation of CSCs has been poorly understood. In this study, we found that cancer stem-like sphere cells enriched from human hepatocellular carcinoma cell line Hep G2 could differentiate into endothelial cells morphologically and functionally, and this process could be blocked by Akt1/2 kinase inhibitor and IKK-beta inhibitor BAY 11-7082 but not by Bevacizumab, a VEGFA-binding antibody, and DAPT, a gamma-secretase inhibitor. Both hydrogen peroxide and BSO (an inhibitor of GSH biosynthesis) induce the differentiation of cancer stem-like sphere cells into endothelial cells, which can be canceled by the antioxidant N-Acetyl-L-cysteine (NAC). We also found that hydrogen peroxide or BSO induces the phosphorylation of Akt and IKK of endothelial differentiated sphere cells. Accordingly, both Akt1/2 kinase inhibitor and BAY 11-7082 inhibited hydrogen peroxide and BSO-mediated endothelial differentiation of cancer stem-like sphere cells. Collectively, the results of the present study demonstrate that cancer stem-like sphere cells from Hep G2 are able to differentiate into endothelial cells both morphologically and functionally, and this process is independent of VEGF and NOTCH signaling but dependent on the activation of Akt and IKK. ROS promote endothelial differentiation of cancer stem-like sphere cells through activation of Akt/IKK signaling pathway. Therefore, our study reveals a novel mechanism of resistance to conventional antiangiogenic therapy and may provide a potential therapeutic target for liver cancer treatment.

Protective Effect of Polydatin on Jejunal Mucosal Integrity, Redox Status, Inflammatory Response, and Mitochondrial Function in Intrauterine Growth-Retarded Weanling Piglets

期刊: OXIDATIVE MEDICINE AND CELLULAR LONGEVITY, 2020; 2020 ()

Intrauterine growth retardation (IUGR) delays the gut development of neonates, but effective treatment strategies are still limited. This study used newborn piglets as a model to evaluate the protective effect of polydatin (PD) against IUGR-induced intestinal injury. In total, 36 IUGR piglets and an equal number of normal birth weight (NBW) littermates were fed either a basal diet or a PD-supplemented diet from 21 to 35 days of age. Compared with NBW, IUGR induced jejunal damage and barrier dysfunction of piglets, as indicated by observable bacterial translocation, enhanced apoptosis, oxidative and immunological damage, and mitochondrial dysfunction. PD treatment decreased bacterial translocation and inhibited the IUGR-induced increases in circulating diamine oxidase activity (P=0.039) and D-lactate content (P=0.004). The apoptotic rate (P=0.024) was reduced by 35.2% in the PD-treated piglets, along with increases in villus height (P=0.033) and in ratio of villus height to crypt depth (P=0.049). PD treatment promoted superoxide dismutase (P=0.026) and glutathione S-transferase activities (P=0.006) and reduced malondialdehyde (P=0.015) and 8-hydroxy-2 '-deoxyguanosine accumulation (P=0.034) in the jejunum. The PD-treated IUGR piglets showed decreased jejunal myeloperoxidase activity (P=0.029) and tumor necrosis factor alpha content (P=0.035) than those received a basal diet. PD stimulated nuclear sirtuin 1 (P=0.028) and mitochondrial citrate synthase activities (P=0.020) and facilitated adenosine triphosphate production (P=0.009) in the jejunum of piglets. Furthermore, PD reversed the IUGR-induced declines in mitochondrial DNA content (P=0.048), the phosphorylation of adenosine monophosphate-activated protein kinase alpha (P=0.027), and proliferation-activated receptor gamma coactivator 1 alpha expression (P=0.033). Altogether, the results indicate that PD may improve jejunal integrity, mitigate mucosal oxidative and immunological damage, and facilitate mitochondrial function in IUGR piglets.

Cholic Acid Protects In Vitro Neurovascular Units against Oxygen and Glucose Deprivation-Induced Injury through the BDNF-TrkB Signaling Pathway

期刊: OXIDATIVE MEDICINE AND CELLULAR LONGEVITY, 2020; 2020 ()

Ischemic stroke (IS) can disrupt various types of brain cells in the neurovascular unit (NVU) at both the structural and functional levels. Therefore, NVU is considered to be a more comprehensive target for the treatment of IS. It is necessary to develop drugs which targeted multiple mechanisms and cell types on NVU against IS. As a component of bile acid, cholic acid has been reported to be able to diffuse across phospholipid bilayers and further cross the blood-brain barrier (BBB). However, the effects exerted by cholic acid (CA) on the NVU after stroke remain unclear. Based on our previous research, we established and further supplemented the characteristics of the functional in vitro NVU model and its oxygen-glucose deprivation and reoxygenation (OGD/R) model. Then, we investigated the effect of CA on the maintenance of the in vitro NVU after OGD/R and further discussed the specific molecular targets that CA played a role in. For the first time, we found that CA significantly maintained BBB integrity, downregulated apoptosis, and mitigated oxidative stress and inflammation damage after OGD/R. Meanwhile, CA obviously increased the levels of brain-derived neurotrophic factor (BDNF), which were mainly secreted from astrocytes, in the coculture system after OGD/R. The results demonstrated that CA significantly increased the expression of TrkB, PI3K/Akt, MAPK/Erk, and CREB in neurons. These positive effects on the downstream proteins of BDNF were suppressed by treatment with ANA12 which is an inhibitor of TrkB. In conclusion, the present study demonstrates that CA exerted multiple protective effects on the NVU, mediated by increasing the release of BDNF and further stimulating the BDNF-TrkB-PI3K/Akt and BDNF-TrkB-MAPK/Erk signaling pathways in the context of OGD/R-induced injury. These findings indicate that CA possesses the effect of antagonizing multiple mechanisms of IS and protecting multiple cell types in NVU and may be useful as a treatment for IS.

共500条页码: 1/34页15条/页