筛选条件 共查询到213条结果
排序方式
Combining HPV DNA load with p16/Ki-67 staining to detect cervical precancerous lesions and predict the progression of CIN1-2 lesions

期刊: VIROLOGY JOURNAL, 2019; 16 (1)

Background Human Papilloma Virus (HPV) DNA tests are highly sensitive and can triage women with mild lesions, improving the prognosis and diagnosis of cervical lesions. However, additional efficient strategies should be developed to improve the specificity of these tests. Methods This study aimed to evaluate the clinical value of HPV DNA load in improving the diagnosis and prognosis of cervical lesions by p16/Ki-67 testing. Histological samples were collected from 350 women with HR-HPV genotyping and analyzed by qRT-PCR. Immunohistochemical staining was used to assess p16 and Ki-67 expression and clinical performance characteristics were calculated. Results Of the cases, 271 had detectable HR-HPV infection, in which HPV-16 was most prevalent (52.0%), followed by HPV-58 (22.5%). P16/Ki-67-positivity increased with histological severity but not for HR-HPV infection. Amongst the 13 HR-HPV genotypes, only HPV-16 (P = 0.016) and HPV-58 (P = 0.004) viral loads significantly correlated with lesion severity. The P16/Ki-67/HPV DNA load co-test indicated an increased sensitivity for the detection of cervical intraepithelial neoplasia (CIN) lesions compared to p16/Ki-67 staining in HPV-16 and/or 58 positive cases. Viral load did not improve the sensitivity of p16/Ki-67 co-test in non-HPV-16 or 58 positive cases. The clinical performance of the p16/Ki-67/HPV DNA load co-test was limited for the prediction of the outcome of CIN1 lesions. However, amongst the 12 HPV-16 and/or 58 positive CIN2 cases in which return visit results were obtained, the behavior of the lesions could be predicted, with a sensitivity, specificity, positive prediction rate (PPV), and negative prediction rate (NPV) of 0.667, 1, 1 and 0.5, respectively. Conclusion Combination of the assessment of HPV DNA load with the intensity of p16 and Ki-67 staining could increase the sensitivity of CIN lesion diagnosis and predict the outcome of CIN2 in patients with a HPV-16 and/or 58 infection.

JIF:2.46

Characterization of Cronartium ribicola dsRNAs reveals novel members of the family Totiviridae and viral association with fungal virulence

期刊: VIROLOGY JOURNAL, 2019; 16 (1)

Background Mycoviruses were recently discovered in the white pine blister rust (WPBR) fungus Cronartium ribicola (J.C. Fisch.). Detection and characterization of their double stranded RNA (dsRNA) would facilitate understanding of pathogen virulence and disease pathogenesis in WPBR systems. Methods Full-length cDNAs were cloned from the dsRNAs purified from viral-infected C. ribicola, and their cDNA sequences were determined by DNA sequencing. Evolutionary relationships of the dsRNAs with related mycoviruses were determined by phylogenetic analysis. Dynamic distributions of the viral RNAs within samples of their fungal host C. ribicola were investigated by measurement of viral genome prevalence and viral gene expression. Results In this study we identified and characterized five novel dsRNAs from C. ribicola, designated as Cronartium ribicola totivirus 1-5 (CrTV1 to CrTV5). These dsRNA sequences encode capsid protein and RNA-dependent RNA polymerase with significant homologies to dsRNA viruses of the family Totiviridae. Phylogenetic analysis showed that the CrTVs were grouped into two distinct clades. CrTV2 through CrTV5 clustered within the genus Totivirus. CrTV1 along with a few un-assigned dsRNAs constituted a distinct phyletic clade that is genetically distant from presently known genera in the Totiviridae family, indicating that CrTV1 represents a novel genus in the Totiviridae family. The CrTVs were prevalent in fungal samples obtained from infected western white pine, whitebark pine, and limber pines. Viral RNAs were generally expressed at higher levels during in planta mycelium growth than in aeciospores and urediniospores. CrTV4 was significantly associated with C. ribicola virulent pathotype and specific C. ribicola host tree species, suggesting dsRNAs as potential tools for dissection of pathogenic mechanisms of C. ribicola and diagnosis of C. ribicola pathotypes. Conclusion Phylogenetic and expression analyses of viruses in the WPBR pathogen, C. ribicola, have enchanced our understanding of virus diversity in the family Totiviridae, and provided a potential strategy to utilize pathotype-associated mycoviruses to control fungal forest diseases.

JIF:2.46

Development of a duplex TaqMan real-time RT-PCR assay for simultaneous detection of newly emerged H5N6 influenza viruses

期刊: VIROLOGY JOURNAL, 2019; 16 (1)

Background: In 2017-2018, a new highly pathogenic H5N6 avian influenza virus (AIV) variant appeared in poultry and wild birds in Asian and European countries and caused multiple outbreaks. These variant strains are different from the H5N6 virus associated with human infection in previous years, and their genetic taxonomic status and antigenicity have changed. Therefore, revision of the primers and probes of fluorescent RT-PCR is important to detect the new H5N6 subtype AIV in poultry and reduce the risk of an epidemic in birds or humans. Methods: In this study, the primers and probes including three groups of HA and four groups of NA for H5N6 influenza virus were evaluated. Then a set of ideal primer and probes were selected to further optimize the reaction system and established a method of double rRT-PCR assay. The specificity of this method was determined by using H1 similar to H16 subtype AIV. Results: The results showed that fluorescence signals were obtained for H5 virus in FAM channel and N6 virus in VIC channel, and no fluorescent signal was observed in other subtypes of avian influenza viruses. The detection limit of this assay was 69 copies for H5 and 83 copies for N6 gene. And, the variability tests of intra- and inter-assay showed excellent reproducibility. Moreover, this assay showed 100% agreement with virus isolation method in detecting samples from poultry. Conclusion: The duplex rRT-PCR assay presented here has high specificity, sensitivity and reproducibility, and can be used for laboratory surveillance and rapid diagnosis of newly emerged H5N6 subtype avian influenza viruses.

JIF:2.46

Characterization and pathogenicity of Vero cell-attenuated porcine epidemic diarrhea virus CT strain

期刊: VIROLOGY JOURNAL, 2019; 16 (1)

Background: Porcine epidemic diarrhea virus (PEDV) has caused enormous economic losses to the global pig industry. Currently available PEDV vaccine strains have limited protective effects against PEDV variant strains. Methods: In this study, the highly virulent epidemic virus strain CT was serially passaged in Vero cells for up to 120 generations (P120). Characterization of the different passages revealed that compared with P10 and P64, P120 had a higher viral titer and more obvious cytopathic effects, thereby demonstrating better cell adaptability. Results: Pathogenicity experiments using P120 in piglets revealed significant reductions in clinical symptoms, histopathological lesions, and intestinal PEDV antigen distribution; the piglet survival rate in the P120 group was 100%. Furthermore, whole-genome sequencing identified 13 amino acid changes in P120, which might be responsible for the attenuated virulence of P120. Conclusions: Thus, an attenuated strain was obtained via cell passaging and that this strain could be used in preparing attenuated vaccines.

JIF:2.46

Tumor necrosis factor-alpha-induced protein 8-like 2 mRNA in peripheral blood mononuclear cells is associated with the disease progression of chronic hepatitis B virus infection

期刊: VIROLOGY JOURNAL, 2019; 16 (1)

Background: Tumor necrosis factor-alpha-induced protein 8-like 2 (TIPE2) is a novel target and molecule in the negative regulation of immune homeostasis. The present study aimed to investigate the dynamic expression of TIPE2 mRNA during the progression of chronic hepatitis B virus (HBV) infection. Methods: A total of 193 patients with chronic HBV infection were retrospectively recruited into this cross-sectional study, including 97 patients with chronic hepatitis B (CHB), 55 with liver cirrhosis and 41 with HBV-related hepatocellular carcinoma (HCC). TIPE2 mRNA was determined using real-time quantitative polymerase chain reaction. Results: The expression of TIPE2 levels in patients with HCC was significantly decreased compared with expression in patients with liver cirrhosis, CHB and healthy controls (P < 0.05); meanwhile, the TIPE2 mRNA levels in patients with CHB and liver cirrhosis were significantly increased compared with levels in healthy controls (P < 0.01). In liver cirrhosis, the TIPE2 mRNA level in the decompensated state was significantly higher than that in the compensated state (P < 0.05). In HCC patients, TIPE2 mRNA was significantly associated with venous invasion, tumor size and tumor node metastasis stage. Furthermore, the optimal cutoff of 0.78 for the level of TIPE2 mRNA has a sensitivity of 97.56% and a specificity of 88.16% for discriminating HCC from patients with CHB and liver cirrhosis. Conclusions: TIPE2 mRNA was associated with various stages of chronic HBV infection, ranging from CHB to liver cirrhosis and HCC. Furthermore, TIPE2 mRNA with an optional cutoff value of 0.78 might serve as a promising biomarker to discriminate HBV-associated HCC from CHB and LC patients.

JIF:2.46

Characteristics of human papillomaviruses distribution in Guizhou Province, China

期刊: VIROLOGY JOURNAL, 2019; 16 (1)

Background Human papillomavirus (HPV) is one of the most common sexually transmitted viruses. Data about HPV infection in Guizhou is limited. Methods 56,768 cervical samples were collected and genotyped for 15 main high risk and 6 main low risk HPV types. Results 16.95% (9623/56768) of samples were HPV positive; 90.70% (8728/9623) of HPV positive women were infected by high risk HPV. High risk and high risk mix infection (1458; 70.85%) was the most common mix HPV infection type. The highest HPV detection rate was found in age group 41-45 years old (detection rate = 17.89%) (chi 2 = 204.77; P < 0.001); the highest within-group HPV infection rates were found in the <= 20 (25.62%) and >= 61 (24.67%) years old age groups, the lowest within-group HPV infection rate was found in the 31-35 years old age group (15.02%). The highest mix infection proportions were found in the >= 61 (36.06%) and <= 20 (33.63%) years old age groups (chi 2 = 111.21; P < 0.001), the lowest mix infection proportion was found in the 41-45 (17.42%) years old age group. The highest high risk infection proportions were found in the 26-30 (92.98%), >= 61 (92.68%), and 36-40 (92.16%) years old age groups (chi 2 = 31.72; P < 0.001), the lowest high risk infection proportion was found in the <= 20 (84.96%) years old age group. HPV infection rates varied with seasons in Guizhou. Conclusions Characteristics of HPV distribution in Guizhou were identified. There were significant differences in HPV distribution among age groups, prevention strategies should be adjusted according to the characteristics.

JIF:2.46

PCR-based reverse genetics strategy for bluetongue virus recovery

期刊: VIROLOGY JOURNAL, 2019; 16 (1)

Background: Bluetongue virus (BTV), an emerging insect vector mediated pathogen affecting both wild ruminants and livestock, has a genome consisting of 10 linear double-stranded RNA genome segments. BTV has a severe economic impact on agriculture in many parts of the world. Current reverse genetics (RG) strategy to rescue BTV mainly rely on in vitro synthesis of RNA transcripts from cloned complimentary DNA (cDNA) corresponding to viral genome segments with the aid of helper plasmids. RNA synthesis is a laborious job which is further complicated with a need for expensive reagents and a meticulous operational procedure. Additionally, the target genes must be cloned into a specific vector to prepare templates for RNA transcription. Result: In this study, we have developed a PCR based BTV RG system with easy two-step transfection. Viable viruses were recovered following a first transfection with the seven helper plasmids and a second transfection with the 10 PCR products on the BSR cells. Further, recovered viruses were characterized with indirect immunofluorescence assays (IFA) and gene sequencing. And the proliferation properties of these viruses were also compared with wild type BTV. Interestingly, we have identified that viruses containing the segment 2 of the genome from reassortant BTV, grew slightly slower than the others. Conclusion: In this study, a convenient PCR based RG platform for BTV is established, and this strategy could be an effective alternative to the original available BTV rescue methods. Furthermore, this RG strategy is likely applicable for other Orbiviruses.

JIF:2.46

The tyrosine 73 and serine 83 dephosphorylation of H1N1 swine influenza virus NS1 protein attenuates virus replication and induces high levels of beta interferon

期刊: VIROLOGY JOURNAL, 2019; 16 (1)

Background: Nonstructural protein 1 (NS1) is a virulence factor encoded by influenza A virus (IAV) that is expressed in the nucleus and cytoplasm of host cells during the earliest stages of infection. NS1 is a multifunctional protein that plays an important role in virus replication, virulence and inhibition of the host antiviral immune response. However, to date, the phosphorylation sites of NS1 have not been identified, and the relationship between phosphorylation and protein function has not been thoroughly elucidated. Method: In this study, potential phosphorylation sites in the swine influenza virus (SIV) NS1 protein were bioinformatically predicted and determined by Phos-tag SDS-PAGE analysis. To study the role of NS1 phosphorylation sites, we rescued NS1 mutants (Y73F and S83A) of A/swine/Shanghai/3/2014(H1N1) strain and compared their replication ability, cytokine production as well as the intracellular localization in cultured cells. Additionally, we used small interfering RNA (siRNA) assay to explore whether changes in the type I IFN response with dephosphorylation at positions 73 and 83 were mediated by the RIG-I pathway. Results: We checked 18 predicted sites in 30 SIV NS1 genes to exclude strain-specific sites, covering H1N1, H1N2 and H3N2 subtypes and identified two phosphorylation sites Y73 and S83 in the H1N1 SIV protein by Phos-tag SDS-PAGE analysis. We found that dephosphorylation at positions 73 and 83 of the NS1 protein attenuated virus replication and reduced the ability of NS1 to antagonize IFN-beta expression but had no effect on nuclear localization. Knockdown of RIG-I dramatically impaired the induction of IFN-beta and ISG56 in NS1 Y73F or S83A mutant-infected cells, indicating that RIG-I plays a role in the IFN-beta response upon rSIV NS1 Y73F and rSIV NS1 S83A infection. Conclusion: We first identified two functional phosphorylation sites in the H1N1 SIV protein: Y73 and S83. We found that dephosphorylation at positions 73 and 83 of the NS1 protein affected the antiviral state in the host cells, partly through the RIG-I pathway.

JIF:2.46

Endothelial IL-8 induced by porcine circovirus type 2 affects dendritic cell maturation and antigen-presenting function

期刊: VIROLOGY JOURNAL, 2019; 16 (1)

Background Porcine circovirus (PCV) disease caused by PCV type 2 (PCV2) is mainly attributed to immunosuppression and immune damage. PCV2 can infect vascular endothelial cells and induce high expression of endothelial IL-8. Dendritic cells (DCs), as professional antigen-presenting cells, can not only present antigens but also activate naive T-cells, causing an immune response. Methods To demonstrate whether endothelial IL-8 is the main factor inhibiting the maturation and related functions of dendritic cells during PCV2 infection, monocyte-derived DCs (MoDCs) and porcine iliac artery endothelial cells (PIECs) processed by different methods were co-cultured in two ways. Flow cytometry, molecular probe labeling, fluorescence quantitative PCR, and the MTS assay were used to detect the changes in related functions and molecules of MoDCs. Results Compared to those in the PIEC-DC group, the endothelial IL-8 upregulation co-culture group showed significantly lower double-positive rates for CD80/86 and MHC-II of MoDCs and significantly increased endocytosis of MoDCs. Meanwhile, the adhesion rate and average fluorescence intensity of MoDCs were significantly downregulated in migration and adhesion experiments. Furthermore, the MHC-I and LAMP7 mRNA levels in MoDCs and the proliferation of MoDC-stimulated T-cells were markedly reduced. However, the changes in MoDCs of the endothelial IL-8 downregulation co-culture group were the opposite. Conclusions PCV2-induced endothelial IL-8 reduces the adhesion and migration ability of MoDCs, resulting in a decreased maturation rate of MoDCs, and further inhibits antigen presentation by DCs. These results may explain the immunosuppressive mechanism of PCV2 from the perspective of the interaction between endothelial cells and DCs in vitro.

JIF:2.46

Important roles of C-terminal residues in degradation of capsid protein of classical swine fever virus

期刊: VIROLOGY JOURNAL, 2019; 16 (1)

Background Capsid (C) protein plays an important role in the replication of classical swine fever virus (CSFV). The ubiquitin proteasome system (UPS) involves in replication of many viruses via modulation of viral proteins. The relationship of CSFV with UPS is poorly understood and the impact of 26S proteasome on C protein has never been reported before. Methods In this study, fused C protein with an EGFP tag is expressed in PK-15 and 3D4/2 cells. MG132 and 3-methyladenine (3-MA) are used to detect the roles of 26S proteasome and autophagolysosome in expression levels of C protein. Truncated and mutant C proteins are used to find the exact residues responsible for the degradation of C protein. Immunoprecipitaion is performed to find whether C protein is ubiquitinated or not. Results C-EGFP protein expresses in a cleaved form at a low level and is degraded by 26S proteasome which could be partly inhibited by MG132. C-terminal residues play more important roles in the degradation of C protein than N-terminal residues. Residues 260 to 267, especially M260 and L261, are crucial for the degradation. In addition, C-terminal residues 262 to 267 determine cleavage efficiency of C protein. Conclusions CSFV C protein is degraded by 26S proteasome in a ubiquitin-independent manner. Last 8 residues at C-terminus of immature C protein play a major role in proteasomal degradation of CSFV C protein and determine the cleavage efficiency of C protein by signal peptide peptidase (SPP). Our findings provide valuable help for fully understanding degradation process of C protein and contribute to fully understanding the role of C protein in CSFV replication.

JIF:2.46

A newly isolated roseophage represents a distinct member of Siphoviridae family

期刊: VIROLOGY JOURNAL, 2019; 16 (1)

Background Members of the Roseobacter lineage are a major group of marine heterotrophic bacteria because of their wide distribution, versatile lifestyles and important biogeochemical roles. Bacteriophages, the most abundant biological entities in the ocean, play important roles in shaping their hosts' population structures and mediating genetic exchange between hosts. However, our knowledge of roseophages (bacteriophages that infect Roseobacter) is far behind that of their host counterparts, partly reflecting the need to isolate and analyze the phages associated with this ecologically important bacterial clade. Methods vB_DshS-R4C (R4C), a novel virulent roseophage that infects Dinoroseobacter shibae DFL12(T), was isolated with the double-layer agar method. The phage morphology was visualized with transmission electron microscopy. We characterized R4C in-depth with a genomic analysis and investigated the distribution of the R4C genome in different environments with a metagenomic recruitment analysis. Results The double-stranded DNA genome of R4C consists of 36,291 bp with a high GC content of 66.75%. It has 49 genes with low DNA and protein homologies to those of other known phages. Morphological and phylogenetic analyses suggested that R4C is a novel member of the family Siphoviridae and is most closely related to phages in the genus Cronusvirus. However, unlike the Cronusvirus phages, R4C encodes an integrase, implying its ability to establish a lysogenic life cycle. A terminal analysis shows that, like that of lambda phage, the R4C genome utilize the 'cohesive ends' DNA-packaging mechanism. Significantly, homologues of the R4C genes are more prevalent in coastal areas than in the open ocean. Conclusions Information about this newly discovered phage extends our understanding of bacteriophage diversity, evolution, and their roles in different environments.

JIF:2.46

Patient with severe fever with thrombocytopenia syndrome virus infection and central nervous system disturbance in Dongyang, Zhejiang Province, China, 2017

期刊: VIROLOGY JOURNAL, 2019; 16 (1)

Background Severe fever with thrombocytopenia syndrome (SFTS) is an emerging hemorrhagic fever that was first described in China in 2011. We report a patient who died of Severe fever with thrombocytopenia syndrome virus (SFTSV) infection, with a rapidly progressive central nervous system (CNS) disturbance, in Dongyang, Zhejiang Province, China, in 2017. Case presentation A 64-year-old man was admitted to hospital after 4 days of fever. SFTSV was detected 1 day after the patient was admitted to hospital. The patient presented with CNS disturbance and died 4 days after admission. Detailed clinical and epidemiological investigations and laboratory tests were conducted. Reduced platelet, white blood cell, lymphocyte, and neutrophil counts, elevated lactate dehydrogenase, creatine kinase, aspartate aminotransferaseand alanine aminotransferase concentrations, and an increased activated partial thromboplastin time were observed. In a phylogenetic analysis, the isolate clustered close to a strain derived from South Korea. Conclusions: This is the first case of SFTSV infection with CNS disturbance in Dongyang, Zhejiang Province, China. The surveillance of suspected cases of SFTS is important in SFTSV endemic regions.

JIF:2.46

Identification of microRNAs regulated by tobacco curly shoot virus co-infection with its betasatellite in Nicotiana benthamiana

期刊: VIROLOGY JOURNAL, 2019; 16 (1)

Background MicroRNAs (miRNAs) are a class of 21-24 nucleotide endogenous non-coding small RNAs that play important roles in plant development and defense responses to biotic and abiotic stresses. Tobacco curly shoot virus (TbCSV) is a monopartite begomovirus, cause leaf curling and plant stunting symptoms in many Solanaceae plants. The betasatellite of TbCSV (TbCSB) induces more severe symptoms and enhances virus accumulation when co-infect the plants with TbCSV. Methods In this study, miRNAs regulated by TbCSV and TbCSB co-infection in Nicotiana benthamiana were characterized using high-throughput sequencing technology. Results Small RNA sequencing analysis revealed that a total of 13 known miRNAs and 42 novel miRNAs were differentially expressed in TbCSV and TbCSB co-infected N. benthamiana plants. Several potential miRNA-targeted genes were identified through data mining and were involved in both catalytic and metabolic processes, in addition to plant defense mechanisms against virus infections according to Gene Ontology (GO) analyses. In addition, the expressions of several differentially expressed miRNAs and their miRNA-targeted gene were validated through quantitative real time polymerase chain reaction (qRT-PCR) approach. Conclusions A large number of miRNAs are identified, and their target genes, functional annotations also have been explored. Our results provide the information on N. benthamiana miRNAs and would be useful to further understand miRNA regulatory mechanisms after TbCSV and TbCSB co-infection.

JIF:2.46

Association of N6-methyladenosine with viruses and related diseases

期刊: VIROLOGY JOURNAL, 2019; 16 (1)

Background N6-methyladenosine (m6A) modification is the most prevalent internal modification of eukaryotic mRNA modulating gene expression. m6A modification is a dynamic reversible process regulated by three protein groups: methyltransferases (writers), demethylases (erasers), and m6A-binding proteins (readers). m6A modification is involved in all phases of RNA metabolism, including RNA folding, stability, splicing, nuclear exporting, translational modulation and degradation. Main body In recent years, numerous studies have reported that abnormal m6A modification causes aberrant expression of important viral genes. Herein, we review the role of m6A in viral lifecycle and its contribution to the pathogenesis of human diseases. Particularly, we focus on the viruses associated with human diseases such as HIV-1, IAV, HBV, HCV, EBV and many others. Conclusions A better understanding of m6A-virus relationship would provide new insights into the viral replication process and pathogenesis of human diseases caused by viruses. In addition, exploration of the role of m6A in disease-causing viruses will reveal novel approaches for the treatment of such diseases.

JIF:2.46

Multiple amino acid substitutions involved in the adaption of three avian-origin H7N9 influenza viruses in mice

期刊: VIROLOGY JOURNAL, 2019; 16 ()

BackgroundAvian influenza A H7N9 virus has caused five outbreak waves of human infections in China since 2013 and posed a dual challenge to public health and poultry industry. The number of reported H7N9 virus human cases confirmed by laboratory has surpassed that of H5N1 virus. However, the mechanism for how H7N9 influenza virus overcomes host range barrier has not been clearly understood.MethodsTo generate mouse-adapted H7N9 influenza viruses, we passaged three avian-origin H7N9 viruses in mice by lung-to-lung passages independently. Then, the characteristics between the parental and mouse-adapted H7N9 viruses was compared in the following aspects, including virulence in mice, tropism of different tissues, replication in MDCK cells and molecular mutations.ResultsAfter ten passages in mice, MLD50 of the H7N9 viruses reduced >750-3,160,000 folds, and virus titers in MDCK cells increased 10-200 folds at 48 hours post-inoculation. Moreover, the mouse-adapted H7N9 viruses showed more expanded tissue tropism and more serious lung pathological lesions in mice. Further analysis of the amino acids changes revealed 10 amino acid substitutions located in PB2 (E627K), PB1 (W215R and D638G), PA (T97I), HA (H3 numbering: R220G, L226S, G279R and G493R) and NA (P3Q and R134I) proteins. Moreover, PB2 E627K substitution was shared by the three mouse-adapted viruses (two viruses belong to YRD lineage and one virus belongs to PRD lineage), and PA T97A substitution was shared by two mouse-adapted viruses (belong to YRD lineage).ConclusionsOur result indicated that the virulence in mice and virus titer in MDCK cells of H7N9 viruses significantly increased after adapted in mouse model. PB2 E627K and PA T97A substitutions are vital in mouse adaption and should be monitored during epidemiological study of H7N9 virus.

JIF:2.46

共213条页码: 1/15页15条/页