筛选条件 共查询到10条结果
排序方式
Generation and Characterization of Induced Pluripotent Stem Cells from Mononuclear Cells in Schizophrenic Patients

期刊: CELL JOURNAL, 2019; 21 (2)

Objective: Schizophrenia (SZ) is a mental disorder in which psychotic symptoms are the main problem. The pathogenesis of SZ is not fully understood, partly because of limitations in current disease models and technology. The development of induced pluripotent stem cell (iPSC) technology has opened up the possibility of elucidating disease mechanisms in neurodegenerative diseases. Here, we aimed to obtain iPSCs from peripheral blood mononuclear cells (PBMCs) of normal and schizophrenic individuals and analyze the inflammatory response in these iPSCs. Materials and Methods: In this experimental study, we isolated PBMCs from whole blood of healthy individuals and SZ patients and reprogrammed them into iPSCs by transfection of recombinant lentiviruses that contained Yamanaka factors (Oct4, Sox2, Klf4 and c-Myc). We calculated the numbers of iPSC clones and stained them with alkaline phosphatase (ALP), Nanog, SSEA4, Nestin, Vimentin, and AFP to confirm their efficiency and pluripotency. The iPSCs were analyzed by real-time quantitative polymerase chain reaction (qRT-PCR) for the expressions of inflammatory factors. Results: iPSCs from schizophrenic patients (SZ-iPSCs) exhibited typical morphology and highly expressed pluripotent markers. These iPSCs retained their normal karyotype and differentiated in vitro to form embryoid bodies (EBs) that expressed markers of all 3 germ layers. However, iPSCs from the SZ-iPSCs group had a weak capacity to differentiate into ectoderm compared to the normal iPSCs (Con-iPSC). An elevated, stronger inflammatory response existed in iPSCs from schizophrenic individuals. Conclusion: We successfully obtained iPSCs from PBMCs of schizophrenic patients without genetic operation and analyzed the expressions of pluripotent markers and inflammatory factors between the Con-iPSC and SZ-iPSC groups. Taken together, our results may assist to explain the pathogenesis of SZ and develop new strategies for clinical diagnosis and treatment.

JIF:2.05

FACT or PACT: A Comparison between Free-Acrylamide and Acrylamide-Based Passive Sodium Dodecyl Sulfate Tissue Clearing for whole Tissue Imaging

期刊: CELL JOURNAL, 2019; 21 (2)

Major biological processes rely on the spatial organization of cells in complex, highly orchestrated three-dimensional (3D) tissues. Until the recent decade, most of information on spatial neural representation primarily came from microscopic imaging of "2D" (5-50 mu m) tissue using traditional immunohistochemical techniques. However, serially sectioned and imaged tissue sections for tissue visualization can lead to unique non-linear deformations, which dramatically hinders scientists' insight into the structural organization of intact organs. An emerging technique known as CLARITY renders large-scale biological tissues transparent for 3D phenotype mapping and thereby, greatly facilitates structure-function relationships analyses. Since then, numerous modifications and improvements have been reported to push the boundaries of knowledge on tissue clearing techniques in research on assembled biological systems. This review aims to outline our current knowledge on next-generation protocols of fast free-of-acrylamide clearing tissue (FACT) and passive CLARITY (PACT). The most important question is what method we should select for tissue clearing, FACT or PACT. This review also highlights how FACT differs from PACT on spanning multiple dimensions of the workflow. We systematically compared a number of factors including hydrogel formation, clearing solution, and clearing temperatures between free-acrylamide and acrylamide-based passive sodium dodecyl sulfate (SDS) tissue clearing and discussed negative effects of polyacrylamide on clearing, staining, and imaging in detail. Such information may help to gain a perspective for interrogating neural circuits spatial interactions between molecules and cells and provide guidance for developing novel tissue clearing strategies to probe deeply into intact organ.

JIF:2.05

Bioinformatic Analysis Identifies Three Potentially Key Differentially Expressed Genes in Peripheral Blood Mononuclear Cells of Patients with Takayasu's Arteritis

期刊: CELL JOURNAL, 2018; 19 (4)

Objective: This study aimed to identify several potentially key genes associated with the pathogenesis of Takayasu's arteritis (TA). This identification may lead to a deeper mechanistic understanding of TA etiology and pave the way for potential therapeutic approaches. Materials and Methods: In this experimental study, the microarray dataset GSE33910, which includes expression data for peripheral blood mononuclear cell (PBMC) samples isolated from TA patients and normal volunteers, was downloaded from the publicly accessible Gene Expression Omnibus (GEO) database. Differentially expressed genes (DEGs) were identified in PBMCs of TA patients compared with normal controls. Gene ontology (GO) enrichment analysis of DEGs and analysis of protein-protein interaction (PPI) network were carried out. Several hub proteins were extracted from the PPI network based on node degrees and random walk algorithm. Additionally, transcription factors (TFs) were predicted and the corresponding regulatory network was constructed. Results: A total of 932 DEGs (372 up-and 560 down-regulated genes) were identified in PBMCs from TA patients. Interestingly, up-regulated and down-regulated genes were involved in different GO terms and pathways. A PPI network of proteins encoded by DEGs was constructed and RHOA, FOS, EGR1, and GNB1 were considered to be hub proteins with both higher random walk score and node degree. A total of 13 TFs were predicted to be differentially expressed. A total of 49 DEGs had been reported to be associated with TA in the Comparative Toxicogenomics Database (CTD). The only TA marker gene in the CTD database was NOS2, confirmed by three studies. However, NOS2 was not significantly altered in the analyzed microarray dataset. Nevertheless, NOS3 was a significantly down-regulated gene and was involved in the platelet activation pathway. Conclusion: RHOA, FOS, and EGR1 are potential candidate genes for the diagnosis and therapy of TA.

JIF:2.05

Skeletal Muscle CLARITY: A Preliminary Study of Imaging The Three-Dimensional Architecture of Blood Vessels and Neurons

期刊: CELL JOURNAL, 2018; 20 (2)

Objective: Passive CLARITY is a whole-tissue clearing protocol, based on sodium dodecyl sulfate (SDS) clearing, for imaging intact tissue containing transgenic or immunolabeled fluorescent proteins. In this study, we present an improved passive CLARITY protocol with efficient immunolabeling without the need for electrophoresis or complex instrumentation. Materials and Methods: In this experimental study, after perfusion of C57BL/6N mice with phosphate-buffered saline (PBS) and then with acrylamide-paraformaldehyde (PFA), the quadriceps femoris muscle was removed. The muscle samples were post-fixed and degassed to initiate polymerization. After removing the excess hydrogel around the muscle, lipids were washed out with the passive CLARITY technique. The transparent whole intact muscles were labeled for vessel and neuron markers, and then imaged by confocal microscopy. Three-dimensional images were reconstructed to present the muscle tissue architecture. Results: We established a simple clearing protocol using wild type mouse muscle and labeling of vasculatures and neurons. Imaging the fluorescent signal was achieved by protein fixation, adjusting the pH of the SDS solution and using an optimum temperature (37 degrees C) for tissue clearing, all of which contributed to the superiority of our protocol. Conclusion: We conclude that this passive CLARITY protocol can be successfully applied to three-dimensional cellular and whole muscle imaging in mice, and will facilitate structural analyses and connectomics of large assemblies of muscle cells, vessels and neurons in the context of three-dimensional systems.

JIF:2.05

Identification of Potential Molecular Mechanisms and Candidate Genes Involved in The Acute Phase of Myocardial Infarction

期刊: CELL JOURNAL, 2018; 20 (3)

Objective: This study used bioinformatics to determine genetic factors involved in progression of acute myocardial infarction (MI). Materials and Methods: In this prospective study, gene expression profile GSE59867 was downloaded from the Gene Expression Omnibus database, which contained 46 normal samples obtained from stable coronary artery disease patients (n=46) who were without history of MI (control) and 390 samples from patients (n=111) who had evolving ST-segment elevation myocardial infarction (STEMI) as the MI group. These samples were divided into 4 groups based on time points. After identification of differentially expressed genes (DEGs), we conducted hierarchical clustering and functional enrichment analysis. Protein interaction and transcriptional regulation among DEGs were analysed. Results: We observed 8 clusters of DEGs that had a peak or a minimum at the t=1 time point according to gene expression levels. Upregulated DEGs showed significant enrichment in the biological process, single-organism cellular process, response to stimulus and stress, and osteoclast differentiation and lysosome. Downregulated DEGs enriched in the T-cell receptor signalling pathway and natural killer cell mediated cytotoxicity. We identified multiple genes, including signal transducer and activator of transcription 3 (STAT3); LCK proto-oncogene, Src family tyrosine kinase (LCK); and FYN proto-oncogene, Src family tyrosine kinase (FYN) from the protein-protein interaction (PPI) network and/or the transcriptional regulatory network. Conclusion: Cytokine-mediated inflammation, lysosome and osteoclast differentiation, and metabolism processes, as well as STAT3 may be involved in the acute phase of MI.

JIF:2.05

Chronic Obstructive Pulmonary Disease Molecular Subtyping and Pathway Deviation-Based Candidate Gene Identification

期刊: CELL JOURNAL, 2018; 20 (3)

Objective: The aim of this study was to identify the molecular subtypes of chronic obstructive pulmonary disease (COPD) and to prioritize COPD candidate genes using bioinformatics methods. Materials and Methods: In this bioinformatics study, the gene expression dataset GSE76705 (including 229 COPD samples) and known COPD-related genes (candidate genes) were downloaded from the Gene Expression Omnibus (GEO) and the Online Mendelian Inheritance in Man (OMIM) databases respectively. Based on the expression values of the candidate genes, COPD samples were divided into molecular subtypes through hierarchical clustering analysis. Candidate genes were accordingly allocated into the defined molecular subtypes and functional enrichment analysis was undertaken. Pathway deviation scores were then analyzed, followed by the analysis of clinical indicators (FEV1, FEV1/FVC, age and gender) of COPD patients in each subtype, and prediction models were constructed. Furthermore, the gene expression dataset GSE71220 was used to bioinformatically validate our results. Results: A total of 213 COPD-related genes were identified, which divided samples into three subtypes based on the gene expression values. After intersection analysis, 160 common genes including transforming growth factor beta 1 (TGFB1), epidermal growth factor receptor (EGFR) and interleukin 13 (IL13) were obtained. Functional enrichment analysis identified 22 pathways such as 'hsa04060: cytokine-cytokine receptor interaction pathways, 'hsa04110: cell cycle' and ' hsa05222: small cell lung cancer'. Pathways in subtype 2 had higher deviation scores. Furthermore, three receiver operating characteristic (ROC) curves (accuracies > 80%) were constructed. The three subtypes in COPD samples were also identified in the validation dataset GSE71220. Conclusion: COPD may be further subdivided into several molecular subtypes, which may be useful in improving COPD therapy based on the molecular subtype of a patient.

JIF:2.05

Effect of Food Additive Citric Acid on The Growth of Human Esophageal Carcinoma Cell Line EC109

期刊: CELL JOURNAL, 2017; 18 (4)

Objective: Today, esophageal cancer (EC) has become one of the most common cancer types in China. Therefore, new drug and therapeutic strategies are urgently needed to improve postoperative survival rate of patients with EC. As a food additive, several lines of evidence have shown that citric acid can be served as glycolysis suppressor to inhibit growth of some tumor cells. However, little is known about the effect of this organic acid on the growth of human esophageal carcinoma cell line, EC109. Materials and Methods: In this experimental study, cell proliferation rate was determined using MTT assay. Apoptotic morphological changes were evaluated by fluorescent microscopy using Hoechst 33258 staining. Cell apoptosis rate and mitochondrial membrane potential (MMP) were detected using flow-cytometry. Effect of citric acid on cellular membrane permeability was assessed by measuring lactate dehydrogenase (LDH) activity, using LDH assay kit. Results: Compared to the control group, there was a marked decrease in cells proliferation when the cells were treated with higher citric acid concentrations (800, 1600 mu g/ml). Typical apoptotic morphology of EC109 cells was observed upon treatment with citric acid, such as chromatin condensation and appearance of apoptotic body. Cell apoptotic indexes were significantly increased (P<0.01) after treatment with citric acid at the concentration of 400-1600 mu g/ml. Extracellular LDH activity and loss of MMP in all of the treated groups were significantly higher than control (P<0.05), in a dose-dependent manner. Conclusion: These results suggest that citric acid prevents EC109 cell growth by inhibiting cell proliferation and inducing apoptosis, which perhaps offers some theoretical guidance for its application in EC treatment.

JIF:2.36

Delayed Liver Regeneration after Partial Hepatectomy in Aged Nos2 Knockout Mice

期刊: CELL JOURNAL, 2017; 19 (2)

Objective: Patients over 60 years of age have higher mortality and morbidity after major liver resections. Nitric oxide (NO) derived from the catalytic activity of Nos2 plays a beneficial role in liver regeneration (LR) after partial hepatectomy (PH). In this experiment, we evaluated the effect of Nos2 knockout (KO) on LR in aged mice after PH. Materials and Methods: In this experimental study, 52 two-year-old Nos2 KO and 46 the same age wild-type (WT) C57BL/6J mice were subjected to 2/3 PH. Liver tissues were collected at 11 time points after PH. Mice survival ratio and liver coefficient (liver-weight/ body-weight) was calculated. Transcript and protein levels were estimated by reverse transcriptase-quantitative polymerase chain reaction (RT-qPCR) and Western blot, respectively. Results: The aged Nos2 KO mice had lower survival ratio (P=0.039) and liver coefficient (P=0.002) at the termination phase. Nos2 transcript level was obviously increased after PH in WT mice and undetected in the Nos2 KO mice. During LR, the expression at the transcript level of Cyclin D1, Cyclin A2 and Cyclin B1 and protein expression level of proliferation marker Ki67 and proliferation-associated transcription factors JNK1, NF-kB and STAT3 were decreased or delayed. The expression of pro-apoptotic proteins, CAS-PASE3, CASPASE9 and BAX, was increased in the Nos2 KO mice. Conclusion: Decreased survival ratio and impaired LR in aged Nos2 KO mice is probably due to decreased liver cell proliferation and increased liver cell apoptosis.

JIF:2.36

Taraxerol Induces Cell Apoptosis through A Mitochondria-Mediated Pathway in HeLa Cells

期刊: CELL JOURNAL, 2017; 19 (3)

Objective: Taraxerol acetate has potent anti-cancer effects via the induction of apoptosis, autophagy, cell cycle arrest, and inhibition of cell migration. However, whether taraxerol induced apoptosis and its underlying mechanisms of action is not clear. In the present study, we assess the effects of taraxerol on the mitochondrial apoptotic pathway and determine the release of cytochrome c to the cytosol and activation of caspases. Materials and Methods: In this experimental study, we mainly investigated the effect of taraxerol on HeLa cells. We tested cell viability by the MTT assay and morphologic changes, analyzed apoptosis by DAPI staining and flow cytometry. We also determined reactive oxygen species (ROS) and mitochondrial membrane potential (MMP) using a Microplate Reader. In addition, the apoptotic proteins were tested by Western blot. Results: Taraxerol enhanced ROS levels and attenuated the MMP (Delta psi m) in HeLa cells. Taraxerol induced apoptosis mainly via the mitochondrial pathway including the release of cytochrome c to the cytosol and activation of caspases 9 and 3, and anti-poly (ADPribose) polymerase (PARP). Taraxerol could induce the down-regulation of the anti-apoptotic protein Bcl-2 and up-regulation of pro-apoptotic protein Bax. It suppressed the PI3K/Akt signaling pathway. Conclusion: These results demonstrated that taraxerol induced cell apoptosis through a mitochondria-mediated pathway in HeLa cells. Thus, taraxerol might be a potential anticervical cancer candidate.

JIF:2.36

Cardio-Protective Role of Gingerol along with Prominent Anti-Diabetic Cardiomyopathy Action in A Streptozotocin-Induced Diabetes Mellitus Rat Model

期刊: CELL JOURNAL, 2017; 19 (3)

Objective: Diabetic cardiomyopathy (DCM) is characterized as a coronary heart disease which expands during diabetes due to alterations in the myocardial function and structure. The currentstudy intends to elucidate the protective effect of gingerol on DCM in a streptozotocin (STZ)-induced diabetes mellitus (DM) rat model. Materials and Methods: In this experimental study, the animals were divided into three groups: normal control, DM control, and DM+gingerol (10 mg/kg). The body weights of all rats were estimated at regular intervals. The myocardial profile, oxidative stress, and activities of metabolic enzymes were also scrutinized. The proinflammatory cytokine levels together with cellular protein expression connected with apoptosis were estimated via Western blot analysis. Results: The rats that suffered from DCM exhibited abnormal levels of myocardial markers, aberrant metabolic enzymatic activity, elevated concentrations of inflammatory factors, and enhanced oxidative stress parameters along with increased cell death apoptosis. Whereas gingerol showed protective effects on the treated rats by an improved antioxidant defense system. Conclusion: The current findings suggested that gingerol is effective in the treatment of DCM by inhibition of inflammation and oxidative stress.

JIF:2.36

共10条页码: 1/1页15条/页