幽门螺杆菌感染与非酒精性脂肪性肝病的相关性及潜在机制

2023-09-22 协和医学杂志 协和医学杂志 发表于加利福尼亚

本文就HP感染与 NAFLD的相关性及其潜在机制相关研究进展进行综述,以期为NAFLD的诊治提供新思路。

综 述

随着人们生活方式的改变,非酒精性脂肪性肝病(NAFLD)目前已成为世界范围内最常见的肝脏疾病之一,包括肝脂肪变性、非酒精性脂肪性肝炎(NASH)和肝纤维化,这些疾病可能发展为肝硬化、肝细胞癌(HCC),NASH将成为肝移植的主要适应证[1]

由于NAFLD的诊断缺乏统一明确的临床标准,且其发病机制较为复杂,由胰岛素抵抗 (IR) 、脂质紊乱、氧化应激、肠道微生物及遗传等多种因素发挥协同作用导致NAFLD的发生[2]。目前针对NAFLD的治疗仍以调整生活方式、控制血糖及血脂等危险因素为主,尚无有效治疗药物[3],因此,对于NAFLD发病机制的研究具有重要意义。

幽门螺杆菌(HP)是定植于胃壁黏膜上皮细胞的革兰氏阴性致病菌, HP感染与NAFLD的发生具有相关性[4],其可能通过诱发胰岛素抵抗、改变脂质谱、促进氧化应激、改变肠道通透性和调控基因表达等作用机制导致NAFLD的发生。因此,本文就HP感染与 NAFLD的相关性及其潜在机制相关研究进展进行综述,以期为NAFLD的诊治提供新思路。

1 HP感染与NAFLD的相关性

诸多研究表明,HP感染与NAFLD的发生存在相关性。

Cindoruk等[5]在44岁的NASH患者肝脏中首次发现HP 16s重组RNA。研究表明,高脂饮食喂养的小鼠在感染HP后表现出更严重的肝脂肪变性,提示HP可能在NAFLD的发生发展中发挥作用[6]

2019年的一项横断面研究发现,HP阳性组的脂肪肝发生率显著高于HP阴性组,且HP感染是NAFLD的独立危险因素,与脂肪变性程度增加相关[7]

Yu等[8]将感染HP的NAFLD患者分为HP根除治疗组和对照组,随访1年后发现,治疗组的代谢指标[如空腹血糖、糖化血红蛋白(HbA1c)、胰岛素抵抗指数(HOMA-IR)、甘油三酯(TG)]、炎症指标[包括白细胞计数、C反应蛋白(CRP)、白细胞介素-6(IL-6)、肿瘤坏死因子α(TNF-α)]显著降低,表明HP感染可能通过影响炎症因子参与NAFLD的发生和发展。

此外,不同严重程度的NAFLD患者HP感染的发生率具有显著性差异,而肝脂肪变性合并NAFLD的发生率在HP阳性和HP阴性患者中亦存在显著差异[9]。诸多荟萃分析表明,HP感染增加了NAFLD的发生风险,是NAFLD易感患者发病的危险因素[10-14]

然而,HP感染与NAFLD的相关性尚存争议。一项孟德尔随机化研究表明,HP感染与NAFLD之间不存在相关性[15]。日本一项纳入13 737名成年人的横断面研究发现,无论性别如何,HP感染与脂肪肝及NAFLD无关[16],另一项研究结论与之相同[17]

我国一项回顾性研究通过校正混杂因素后发现,HP感染并非NAFLD的独立危险因素,不同严重程度的NAFLD与HP感染无关[18]。尽管根除HP可显著降低HP感染合并NAFLD患者的丙氨酸转氨酶水平,但其他代谢指标水平均未变化[19]。HP感染与NAFLD之间的相关性差异可能与常规超声检查在NAFLD分级诊断方面的局限性和研究样本量不同有关。

2 HP感染导致NAFLD发病的潜在机制

2.1 IR

IR是指胰岛素对脂肪组织、肝脏和骨骼肌等关键靶组织的作用受损,从而引起长期的全身性高胰岛素血症。

研究表明,高胰岛素血症会增加NAFLD的发病风险,其可能机制是高胰岛素血症导致NAFLD患者的肝脏从头脂肪生成增加和脂肪组织脂解抑制受损,促进肝细胞内脂质积聚和极低密度脂蛋白(VLDL)分泌,从而导致肝细胞脂肪变性,而过量的肝内TG又加重了高胰岛素血症和IR[20-21]

研究表明,HP感染与IR、血脂紊乱密切相关,HP根除治疗后,血清总胆固醇(TC)、低密度脂蛋白(LDL)、TG、HbA1c、空腹血糖、胰岛素、IR、肝脏脂肪变性指数(HSI)和NAFLD-肝脏脂肪评分(LFS)显著降低,高密度脂蛋白(HDL)显著升高[22-24]

Aydemi等[25]将63例患者分为HP感染组和非HP感染组进行研究,发现两组HOMA-IR具有显著差异,HP感染可能通过促进IR而导致NAFLD的发生。最近一项荟萃分析表明,HP感染可能会导致代谢综合征和IR[26]。HP感染可能通过以下途径诱导IR,进而导致NAFLD的发生。

2.1.1 炎症因子 

HP感染可引起胃黏膜急慢性炎症,增加TNF-α、CRP和IL-6等炎症因子的表达[27-28],可能通过激活多条炎症通路,使机体保持低度慢性炎症,干扰胰岛素的信号转导而诱导IR,参与NAFLD的发生[25,29]

TNF-α可通过调节与脂质代谢、炎症因子和肝纤维化相关的关键分子或下调葡萄糖转运体-4(GLUT-4)的表达导致IR,从而在NAFLD的发生中发挥关键作用[30-31]。CRP作为肝脏产生的一种典型非特异性急性时相蛋白,通过提高核转录因子κB(NF-κB)的活性而干扰胰岛素的信号转导[32]

研究发现,IL-6水平与胰岛素敏感性有关,当机体处于IR 状态时,IL-6水平明显升高[33]。另有研究表明,炎症因子与NAFLD发病风险显著相关[34]。因此,HP感染可能通过引起慢性炎症或激活上述信号通路促进IR的发生,使肝脏暴露于高水平的炎症因子时加重对肝脏的损伤,从而导致肝细胞坏死、肝纤维化和NAFLD的发生。

2.1.2 脂肪因子和血脂

脂肪组织通过分泌瘦素、脂联素等脂肪因子参与IR,促进NAFLD的发生发展。Abdel-Razik等[35] 研究发现,HP感染者体内通常表现为高瘦素水平和低脂联素(APN)水平,而APN水平与NAFLD的发生及严重程度密切相关[36-37]。APN是一种具有抗脂肪变性、抗炎和抗纤维化作用的脂肪因子,其主要机制是与肝脏APN受体结合,激活胰岛素信号通路和AMPK信号通路以增强胰岛素敏感性从而减少肝脏脂质积累[38]

而瘦素可通过抑制肝葡萄糖生成和脂肪生成从而发挥抗脂肪变性作用,同时促进胰岛素受体底物-1(IRS-1),即丝氨酸-318磷酸化而干扰胰岛素受体信号转导[39],在NAFLD后期促进肝脏活性氧(ROS)生成、促炎因子释放以及纤维蛋白生成,发挥促炎和促纤维化作用。这些促炎因子也可调节瘦素的表达,从而维持慢性炎症状态[40]

国外一项荟萃分析表明,HP感染可使LDL、TC和TG水平升高、HDL水平降低[41]。而根除HP可降低血脂异常的发生风险[42]。此外,Eshraghian等[43]首次证明了脂联素、瘦素和IR的改变与肝移植者的肝脂肪变性相关。因此,HP感染可能通过影响脂质代谢及胰岛素信号转导而导致NAFLD的发生。

2.1.3 胎球蛋白A

胎球蛋白A主要由肝脏产生,通过抑制胰岛素依赖性受体酪氨酸激酶的自身磷酸化以及IRS-1的丝氨酸磷酸化、抑制IRS减少机体葡萄糖的利用导致IR发生[44-47]

动物实验表明,胎球蛋白A将游离脂肪酸(FFAs)与Toll样受体4(TLR4)结合,导致脂肪组织产生炎症反应和IR[48]

近期研究表明,胎球蛋白A水平升高与青年人群中NAFLD的发生率和严重程度有关[49]。HP感染可能通过胎球蛋白A的产生促进IR,且HP阳性组的胎球蛋白A水平显著高于HP阴性组[50]。因此,HP感染可能通过影响胎球蛋白A水平而诱导IR发生,从而促进NAFLD。

2.2 氧化应激

在生理条件下,ROS和活性氮(RNS)生成与抗氧化水平之间的平衡能够调控细胞功能及细胞间相互作用,而过量的ROS会损害蛋白质和其他生物分子,最终导致细胞死亡[51]。ROS诱发的氧化应激通过触发肝细胞应激途径导致炎症和纤维化从而参与NAFLD的发生和发展[52]

此外,氧化应激可引起肝脏中氧化磷脂(OxPLs)的累积并导致肝细胞线粒体功能障碍,线粒体DNA由氧化受损的肝细胞释放,其对ROS高度敏感,通过激活TRL9引发肝脏炎症,进而诱发NAFLD的发生[53-54]。近年来的研究表明,感染HP的胃上皮细胞可产生ROS和RNS,其中以活化的中性粒细胞为主,通过氧化应激和细胞凋亡导致肝细胞产生炎症反应、纤维化甚至死亡[55-56]

2.3 肠道微生物

肠道菌群包括多种参与代谢、合成和调节功能的微生物,是肠道屏障的第一道防线。肠-肝轴在维持肠道和肝脏的局部稳态中发挥重要作用。研究表明,NAFLD患者的肠道微生物多样性及丰富度均有所改变,对基线时小肠通透性升高的NAFLD患者行粪菌移植后发现其小肠通透性降低[57-58],可能机制是肠道菌群失调加重肠道对细菌产物的通透性,导致细菌易位,使肝脏接触毒性物质增多,导致肝脏炎症反应和肝纤维化,进而加重代谢紊乱和NAFLD[59]

此外,Heimesaat等[60]通过检测HP感染组与未感染组小鼠肠道菌群的变化,发现长期感染HP的小鼠肠道远端未感染,而发炎的近端肠道菌群组成发生明显变化。一项益生菌治疗小鼠HP感染的研究表明,治疗后胃肠道菌群多样性增加,抗炎细菌增多,促炎症途径相关基因表达降低[7,61-63]

2.4 基因表达调控

研究表明,携带有脂联素基因启动子11391G/A(AA)和细胞外超氧化物歧化酶(EC-SOD)CG+GG基因型的人群属于NAFLD高危人群,而此基因型和HP感染的相互作用促进了NAFLD的发生发展[64]

同样,具有谷胱甘肽过氧化物酶-1基因Pro198Leu(PL)、Pro198Leu (LL)、过氧化物酶体增殖物激活受体γ2基因Pro12Ala(PA)和Pro12Ala(AA)的患者在感染HP后促进了NAFLD的发展,因此研究者认为可通过根除HP或调控基因表达预防NAFLD[65]

另一项动物实验发现,在感染HP的NAFLD小鼠中,Men1基因或蛋白表达下调,而IL-6 和IL-18表达上调,因此上调Men1基因或蛋白的表达可能会减轻小鼠肝脏损伤程度,或可作为治疗HP感染患者NAFLD的有效靶点[66]

3 小结与展望

综上所述,根除HP可进一步降低NAFLD的代谢指标和肝脂肪变性程度,但目前针对 HP根除治疗改善NAFLD伴HP感染患者的血脂、肝功能水平和临床症状的有效性研究较少。由于研究对象、研究设计、疾病诊断标准以及样本量均会影响研究结果,未来仍需多地区、大样本、前瞻性研究,并对HP感染患者进行持续随访,进一步揭示HP感染和NAFLD的相关性以及根除HP对于NAFLD治疗的有效性。

此外,2020年NAFLD被重新命名为代谢相关脂肪性肝病(MAFLD)[67]。越来越多的学者关注MAFLD在临床实践中的应用,但目前尚无研究使用MAFLD这一术语研究与HP的相关性。因此,建议使用MAFLD诊断标准进行研究,同时比较NAFLD、MAFLD与HP之间的相关性,使非酒精性脂肪性肝病与HP之间的相关性研究更加全面。

因此,HP感染可促进其产生的相关毒素通过门静脉进入肝脏,引发肝脏炎症和肝脂肪变性,从而促进HP及其产生的相关毒素通过门静脉进入肝脏,引发肝脏炎症和肝细胞脂肪变性。

参考文献

[1]Younossi ZM, Marchesini G, Pinto-Cortez H, et al. Epidemiology of Nonalcoholic Fatty Liver Disease and Nonalcoholic Steatohepatitis: Implications for Liver Transplantation[J]. Transplantation, 2019, 103: 22-27.

[2]Buzzetti E, Pinzani M, Tsochatzis EA. The multiple-hit pathogenesis of non-alcoholic fatty liver disease (NAFLD)[J]. Metabolism, 2016, 65: 1038-1048.

[3]Negi CK, Babica P, Bajard L, et al. Insights into the molecular targets and emerging pharmacotherapeutic interven-tions for nonalcoholic fatty liver disease[J]. Metabolism, 2022, 126: 154925.

[4]Santos MLC, De Brito BB, Da Silva FAF, et al. Helicobacter pylori infection: Beyond gastric manifestations[J]. World J Gastroenterol, 2020, 26: 4076-4093.

[5]Cindoruk M, Cirak MY, Unal S, et al. Identification of Helicobacter species by 16S rDNA PCR and sequence analysis in human liver samples from patients with various etiologies of benign liver diseases[J]. Eur J Gastroenterol Hepatol, 2008, 20: 33-36.

[6]He C, Cheng D, Wang H, et al. Helicobacter pylori infection aggravates diet-induced nonalcoholic fatty liver in mice[J]. Clin Res Hepatol Gastroenterol, 2018, 42: 360-367.

[7]Abo-Amer YE, Sabal A, Ahmed R, et al. Relationship Between Helicobacter pylori Infection and Nonalcoholic Fatty Liver Disease (NAFLD) in a Developing Country: A Cross-pal Study[J]. Diabetes Metab Syndr Obes, 2020, 13: 619-625.

[8]Yu YY, Tong YL, Wu LY, et al. Helicobacter pylori infection eradication for nonalcoholic fatty liver disease: a randomized controlled trial[J]. Sci Rep, 2022, 12: 19530.

[9]Chen C, Zhang C, Wang X, et al. Helicobacter pylori infection may increase the severity of nonalcoholic fatty liver disease via promoting liver function damage, glycometabolism, lipid metabolism, inflammatory reaction and metabolic syndrome[J]. Eur J Gastroenterol Hepatol, 2020, 32: 857-866.

[10]Wei L, Ding HG. Relationship between Helicobacter pylori infection and nonalcoholic fatty liver disease: What should we expect from a meta-analysis?[J]. Medicine (Baltimore), 2021, 100: e26706.

[11]Mantovani A, Turino T, Altomari A, et al. Association between Helicobacter pylori infection and risk of nonalcoholic fatty liver disease: An updated meta-analysis[J]. Metabolism, 2019, 96: 56-65.

[12]Heydari K, Yousefi M, Alizadeh-Navaei R, et al. Helicobacter pylori Infection and Non-alcoholic Fatty Liver Disease: A Systematic Review and Meta-Analysis[J]. Turk J Gastroenterol, 2022, 33: 171-181.

[13]Ma Z, Chu X, Yan X, et al. Association between Helicobacter pylori infection and non-alcoholic fatty liver disease for Asian and non-Asian population: A systematic review and meta-analysis[J]. Front Public Health, 2022, 10: 1062942.

[14]Liu R, Liu Q, He Y, et al. Association between Helico-bacter pylori infection and nonalcoholic fatty liver: A meta-analysis[J]. Medicine (Baltimore), 2019, 98: e17781.

[15]Liu Y, Xu H, Zhao Z, et al. No evidence for a causal link between Helicobacter pylori infection and nonalcoholic fatty liver disease: A bidirectional Mendelian randomization study[J]. Front Microbiol, 2022, 13: 1018322.

[16]Okushin K, Takahashi Y, Yamamichi N, et al. Helicobacter pylori infection is not associated with fatty liver disease including non-alcoholic fatty liver disease: a large-scale cross-pal study in Japan[J]. BMC Gastroenterol, 2015, 15: 25.

[17]Baeg MK, Yoon SK, Ko SH, et al. Helicobacter pylori infection is not associated with nonalcoholic fatty liver disease[J]. World J Gastroenterol, 2016, 22: 2592-2600.

[18]Wang W, Fan M, Gong R, et al. Helicobacter pylori infection is not an independent risk factor of non-alcoholic fatty liver disease in China[J]. BMC Gastroenterol, 2022, 22: 81.

[19]Kazemifar AM, Shafikhani AA, Hajinoormohammadi E, et al.Investigating effect of Helicobacter pylori treatment on improvement of non-alcoholic fatty liver parameters: a randomized trial[J]. Egyptian Liver J, 2019, 9: 2.

[20]Sohouli MH, Sayyari AA, Lari A, et al. Association of dietary insulinaemic potential and odds of non-alcoholic fatty liver disease among adults: A case-control study[J]. J Hum Nutr Diet, 2021, 34: 901-909.

[21]Smith GI, Shankaran M, Yoshino M, et al. Insulin resistance drives hepatic de novo lipogenesis in nonalcoholic fatty liver disease[J]. J Clin Invest, 2020, 130: 1453-1460.

[22]Polyzos SA, Kountouras J, Zavos C, et al. The association between Helicobacter pylori infection and insulin resistance: a systematic review[J]. Helicobacter, 2011, 16: 79-88.

[23]Vafaeimanesh J, Bagherzadeh M, Heidari A, et al. Diabetic patients infected with Helicobacter pylori have a higher Insulin Resistance Degree[J]. Caspian J Intern Med, 2014, 5: 137-142.

[24]Liou JM, Chen CC, Chang CM, et al. Long-term changes of gut microbiota, antibiotic resistance, and metabolic parameters after Helicobacter pylori eradication: a multicentre, open-label, randomised trial[J]. Lancet Infect Dis, 2019, 19: 1109-1120.

[25]Aydemir S, Bayraktaroglu T, Sert M, et al. The effect of Helicobacter pylori on insulin resistance[J]. Dig Dis Sci, 2005, 50: 2090-2093.

[26]Azami M, Baradaran HR, Dehghanbanadaki H, et al. Association of Helicobacter pylori infection with the risk of metabolic syndrome and insulin resistance: an updated systematic review and meta-analysis[J]. Diabetol Metab Syndr, 2021, 13: 145.

[27]郑凤, 张水英, 孙茂原, 等. 慢性胃炎患者幽门螺旋杆菌感染与IL-6、IL-8和TNF-α的表达研究[J]. 中国初级卫生保健, 2021,35: 90-91,94

[28]Kumar V, Kiran S, Kumar S, et al. Extracellular vesicles in obesity and its associated inflammation[J]. Int Rev Immunol, 2022, 41: 30-44.

[29]Khan RS, Bril F, Cusi K, et al. Modulation of Insulin Resistance in Nonalcoholic Fatty Liver Disease[J]. Hepatology, 2019, 70: 711-724.

[30]Kakino S, Ohki T, Nakayama H, et al. Pivotal Role of TNF-α in the Development and Progression of Nonalcoholic Fatty Liver Disease in a Murine Model[J]. Horm Metab Res, 2018, 50: 80-87.

[31]Leto D, Saltiel AR. Regulation of glucose transport by insulin: traffic control of GLUT4[J]. Nat Rev Mol Cell Biol, 2012, 13: 383-396.

[32]Bian F, Yang XY, Xu G, et al. CRP-Induced NLRP3 Inflammasome Activation Increases LDL Transcytosis Across Endothelial Cells[J]. Front Pharmacol, 2019, 10: 40.

[33]Fernández-Real JM, Broch M, Vendrell J, et al. Interleukin-6 gene polymorphism and insulin sensitivity[J]. Diabetes, 2000, 49: 517-520.

[34]Duan Y, Pan X, Luo J, et al. Association of Inflammatory Cytokines With Non-Alcoholic Fatty Liver Disease[J]. Front Immunol, 2022, 13: 880298.

[35]Abdel-Razik A, Mousa N, Shabana W, et al. Helicobacter pylori and non-alcoholic fatty liver disease: A new enigma? [J]. Helicobacter, 2018,23:e12537.

[36]Kim YS, Lee SH, Park SG, et al. Low levels of total and high-molecular-weight adiponectin may predict non-alcoholic fatty liver in Korean adults[J]. Metabolism, 2020, 103: 154026.

[37]Mantovani A, Zusi C, Csermely A, et al. Association between lower plasma adiponectin levels and higher liver stiffness in type 2 diabetic individuals with nonalcoholic fatty liver disease: an observational cross-pal study[J]. Hormones (Athens), 2022, 21: 477-486.

[38]Gastaldelli A, Sabatini S, Carli F, et al. PPAR-γ-induced changes in visceral fat and adiponectin levels are associated with improvement of steatohepatitis in patients with NASH[J]. Liver Int, 2021, 41: 2659-2670.

[39]Hemmasi G, Zamani F, Khonsari M, et al. Association between Helicobacter pylori and Serum Leptin in Iranian Dyspeptic Patients[J]. Middle East J Dig Dis, 2013, 5: 158-162.

[40]Pérez-Pérez A, Sánchez-Jiménez F, Vilariño-García T, et al. Role of Leptin in Inflammation and Vice Versa[J]. Int J Mol Sci, 2020, 21: 5887.

[41]Shimamoto T, Yamamichi N, Gondo K, et al. The association of Helicobacter pylori infection with serum lipid profiles: An evaluation based on a combination of meta-analysis and a propensity score-based observational approach[J]. PLoS One, 2020, 15: e0234433.

[42]Park Y, Kim TJ, Lee H, et al. Eradication of Helicobacter pylori infection decreases risk for dyslipidemia: A cohort study[J]. Helicobacter, 2021, 26: e12783.

[43]Eshraghian A, Nikeghbalian S, Shamsaeefar A, et al. Hepatic steatosis and liver fat contents in liver transplant recipients are associated with serum adipokines and insulin resistance[J]. Sci Rep, 2020, 10: 12701.

[44]Stefan N, Häring HU. The role of hepatokines in metabolism[J]. Nat Rev Endocrinol, 2013, 9: 144-152.

[45]Hennige AM, Staiger H, Wicke C, et al. Fetuin-A induces cytokine expression and suppresses adiponectin production[J]. PLoS One, 2008, 3: e1765.

[46]Shim YS, Kang MJ, Oh YJ, et al. Fetuin-A as an Alternative Marker for Insulin Resistance and Cardiovascular Risk in Prepubertal Children[J]. J Atheroscler Thromb, 2017, 24: 1031-1038.

[47]Jirak P, Stechemesser L, Moré E, et al. Clinical implications of fetuin-A[J]. Adv Clin Chem, 2019, 89: 79-130.

[48]Pal D, Dasgupta S, Kundu R, et al. Fetuin-A acts as an endogenous ligand of TLR4 to promote lipid-induced insulin resistance[J]. Nat Med, 2012, 18: 1279-1285.

[49]Filardi T, Panimolle F, Tiberti C, et al. Circulating levels of fetuin-A are associated with moderate-severe hepatic steatosis in young adults[J]. J Endocrinol Invest, 2021, 44: 105-110.

[50]Chen LW, Kuo SF, Chen CH, et al. A community-based study on the association between Helicobacter pylori Infection and obesity[J]. Sci Rep, 2018, 8: 10746.

[51]Sies H, Jones DP. Reactive oxygen species (ROS) as pleiotropic physiological signalling agents[J]. Nat Rev Mol Cell Biol, 2020, 21: 363-383.

[52]Arroyave-Ospina JC, Wu Z, Geng Y, et al. Role of Oxidative Stress in the Pathogenesis of Non-Alcoholic Fatty Liver Disease: Implications for Prevention and Therapy[J]. Antioxidants (Basel), 2021, 10: 174.

[53]Sun X, Seidman JS, Zhao P, et al. Neutralization of Oxidized Phospholipids Ameliorates Non-alcoholic Steatohepatitis[J]. Cell Metab, 2020, 31: 189-206.e8.

[54]Shepard CR. TLR9 in MAFLD and NASH: At the Interp of Inflammation and Metabolism[J]. Front Endocrinol (Lausanne), 2020, 11: 613639.

[55]Ding SZ, Minohara Y, Fan XJ, et al. Helicobacter pylori infection induces oxidative stress and programmed cell death in human gastric epithelial cells[J]. Infect Immun, 2007, 75: 4030-4039.

[56]Handa O, Naito Y, Yoshikawa T. Helicobacter pylori: a ROS-inducing bacterial species in the stomach[J]. Inflamm Res, 2010, 59: 997-1003.

[57]Oh JH, Lee JH, Cho MS, et al. Characterization of Gut Microbiome in Korean Patients with Metabolic Associated Fatty Liver Disease[J]. Nutrients, 2021, 13: 1013.

[58]Craven L, Rahman A, Nair Parvathy S, et al. Allogenic Fecal Microbiota Transplantation in Patients With Nonalcoholic Fatty Liver Disease Improves Abnormal Small Intestinal Permeability: A Randomized Control Trial[J]. Am J Gastroenterol, 2020, 115: 1055-1065.

[59]Aron-Wisnewsky J, Vigliotti C, Witjes J, et al. Gut microbiota and human NAFLD: disentangling microbial signatures from metabolic disorders[J]. Nat Rev Gastroenterol Hepatol, 2020, 17: 279-297.

[60]Heimesaat MM, Fischer A, Plickert R, et al. Helicobacter pylori induced gastric immunopathology is associated with distinct microbiota changes in the large intestines of long-term infected Mongolian gerbils[J]. PLoS One, 2014, 9: e100362.

[61]He C, Peng C, Xu X, et al. Probiotics mitigate Helico-bacter pylori-induced gastric inflammation and premalignant lesions in INS-GAS mice with the modulation of gastrointestinal microbiota [J]. Helicobacter, 2022, 27: e12898.

[62]Cheng DD, He C, Ai HH, et al. The Possible Role of Helicobacter pylori Infection in Non-alcoholic Fatty Liver Disease[J]. Front Microbiol, 2017, 8: 743.

[63]Doulberis M, Papaefthymiou A, Srivastava DS, et al. Update on the association between non-alcoholic fatty liver disease and Helicobacter pylori infection[J]. Int J Clin Pract, 2021, 75: e13737.

[64]Zhang C, Guo L, Qin Y, et al. Correlation between Helicobacter pylori infection and polymorphism of adiponectin gene promoter-11391G/A, superoxide dismutase gene in nonalcoholic fatty liver disease[J]. Zhong Nan Da Xue Xue Bao Yi Xue Ban, 2016, 41: 359-366.

[65]张超贤, 郭李柯, 张利利, 等. 幽门螺杆菌感染与PPARγ2基因Pro12Ala、GPx-1基因Pro198Leu多态性的交互作用和非酒精性脂肪性肝病的关系[J]. 临床肝胆病杂志, 2019, 35: 1551-1559.

[66]方德周, 方彦旭, 贾星星. HP感染后Men1基因对非酒精性脂肪肝病及炎症反应的调控机制[J]. 基因组学与应用生物学, 2020, 39: 1824-1829.

[67]Eslam M, Newsome PN, Sarin SK, et al. A new definition for metabolic dysfunction-associated fatty liver disease: An international expert consensus statement[J]. J Hepatol, 2020, 73: 202-209.

版权声明:
本网站所有内容来源注明为“梅斯医学”或“MedSci原创”的文字、图片和音视频资料,版权均属于梅斯医学所有。非经授权,任何媒体、网站或个人不得转载,授权转载时须注明来源为“梅斯医学”。其它来源的文章系转载文章,或“梅斯号”自媒体发布的文章,仅系出于传递更多信息之目的,本站仅负责审核内容合规,其内容不代表本站立场,本站不负责内容的准确性和版权。如果存在侵权、或不希望被转载的媒体或个人可与我们联系,我们将立即进行删除处理。
在此留言
评论区 (1)
#插入话题
  1. [GetPortalCommentsPageByObjectIdResponse(id=2159211, encodeId=a35a215921186, content=啦啦啦啦啦啦, beContent=null, objectType=article, channel=null, level=null, likeNumber=34, replyNumber=0, topicName=null, topicId=null, topicList=[], attachment=null, authenticateStatus=null, createdAvatar=null, createdBy=55488636654, createdName=ms5000000159272953, createdTime=Fri Sep 22 23:33:02 CST 2023, time=2023-09-22, status=1, ipAttribution=广东省)]
    2023-09-22 ms5000000159272953 来自广东省

    啦啦啦啦啦啦

    0

相关资讯

European Radiology:非酒精性脂肪性肝病与心肌缺血有何相关性?

现阶段,冠状动脉CT血管造影(CCTA)已成为评估冠状动脉疾病(CAD)的可靠工具,并被证明在描述冠状动脉狭窄时与有创冠状动脉造影(ICA)具有高度一致性。

专家论坛|周永健:肠道菌群及其代谢产物在非酒精性脂肪性肝病发生发展及治疗中的作用

本文主要关注NAFLD的肠道菌群及代谢产物失衡和相关治疗的进展。

专家论坛|李军:慢性乙型肝炎合并非酒精性脂肪性肝病——当前的认识与争议

本文就CHB合并NAFLD进行简要综述,并对目前二者关系进行探讨,为这类患者的临床治疗提供参考。

Cell Metab:封面!上海交通大学贾伟平等团队合作发现多吃这类食物,减轻脂肪肝

,该研究在NAFLD患者(ChiCTR-IOR-15007519)中进行了一项为期4个月的随机安慰剂对照临床试验,并进行了宏基因组学和代谢组学分析。

专家论坛|李荣宽:非酒精性脂肪性肝病的诊断与评估

本文对NAFLD的诊断及评估等多个方面研究进展进行全面综述。

J Hepatol:中山大学凌文华等合作发现非酒精性脂肪性肝病影响心血管疾病发生和进展的潜在机理

该研究表明肝脂肪变性通过小细胞外囊泡介导的抑制细胞胆固醇外排加重动脉粥样硬化。