Science:能给特定细胞递送药物的新技术

2017-04-18 佚名 生物探索

近期Science上报道了由美国杜克大学和霍华德-休斯医学研究所的研究人员开发出来的一种新方法——DART。这种方法可以将药物运送给大脑中特定类型的神经元,从而为研究神经系统疾病提供前所未有的能力,同时也有望更有针对性地治疗这些疾病。



近期Science上报道了由美国杜克大学和霍华德-休斯医学研究所的研究人员开发出来的一种新方法——DART(Drugs Acutely Restricted by Tethering)。这种方法可以将药物运送给大脑中特定类型的神经元,从而为研究神经系统疾病提供前所未有的能力,同时也有望更有针对性地治疗这些疾病。

在此项研究中研究人员运用DART方法揭示出帕金森病模式小鼠中的行动困难是由AMPA受体控制的。AMPAR是一种突触蛋白,能够让神经元接受大脑中其他神经元快速传来的信号。这些结果揭示出为何近期一种AMPAR阻断药物的临床试验结果不佳,并且提供一种新方法使用这种药物。

DART方法的优点和原理

作者在论文中将DART方法和目前应用于动物行为研究的工具进行比较(如图):传统药理学拥有靶向蛋白准确和作用迅速的优点,但细胞特异性差;遗传编码的工具(如光遗传、化学遗传工具)虽然细胞特异性强、作用迅速,但其靶向的细胞,无法特异操作细胞上的特定蛋白;基因编辑技术同时具有细胞特异性和蛋白特异性,但耗时长。而DART技术具有上述所有优点:细胞、蛋白特异性强,作用又迅速。



DART的工作机制是对一种特定类型的细胞进行基因编程,使之表达来自细菌的一种惰性酶HaloTag。研究人员在HaloTag上连接了TM跨膜区域,这样HaloTag就可以独立表达并锚定在细胞膜上,同时不影响细胞本身蛋白的表达。如图所示,通过改造HaloTag的配体HTL(末端连接药物Rx),达到了HTL与HaloTag结合、将药物靶向性作用于特定受体的效果。

当研究人员注射某种AMPAR阻断药物时,HaloTag会捕获这种药物并将它附着在特定细胞的表面上。研究人员注射非常低剂量的药物,目的是让它不会影响其他的细胞。当这种药物被酶HaloTag标记的细胞表面所捕获后的几分钟后,它的浓度比其他任何地方高100~1000倍。

用DART方法找到帕金森病运动障碍的原因

在利用帕金森病模式小鼠开展的实验中,研究人员将这种HaloTag附着到在基底神经节(大脑中复杂运动控制的区域)中发现的两种神经元上。一种神经元是D1神经元,被认为发送“运动”指令。另一种神经元是D2神经元,被认为发挥着相反的作用,提供阻止运动的指令。

利用DART方法,研究人员将一种AMPAR阻断药物仅运送到D1神经元,仅运送到D2神经元,或者同时运送到D1神经元和D2神经元。当同时运送到这两种神经元时,这种药物仅改善运动功能障碍的几种因素中的一种,这真实反映了最近的一项人体临床试验取得的结果。

随后研究人员发现将这种药物仅运送到D1神经元中不会产生任何效果。然而,令人吃惊的是,当将这种药物仅运送到D2神经元中时,这些帕金森病模式小鼠的运动变得更加频繁和更加快速,换句话说,更加接近于正常小鼠。利用DART方法,证实了帕金森病的运动功能障碍是由D2神经元中基于AMPAR的放电因素引起的。

作者介绍该发现的意义

论文通信作者、杜克大学生物医学工程助理教授Michael Tadross介绍:“在我们首次使用DART中,我们针对帕金森病中的神经回路功能障碍的突触基础已获得新的认识。我们发现靶向特定神经元表面上的特定受体能够导致显着的病情改善。这项研究标志着行为神经药理学的一个重大里程碑。我们在研究帕金森病模式小鼠中获得的新认识是出于意料之外的,而且利用任何之前的方法是不可能获得的。”

原始出处:

Shields BC,Kahuno E,Kim C, et al. Deconstructing behavioral neuropharmacology with cellular specificity. Science  07 Apr 2017: Vol. 356, Issue 6333, eaaj2161. DOI: 10.1126/science.aaj2161

版权声明:
本网站所有内容来源注明为“梅斯医学”或“MedSci原创”的文字、图片和音视频资料,版权均属于梅斯医学所有。非经授权,任何媒体、网站或个人不得转载,授权转载时须注明来源为“梅斯医学”。其它来源的文章系转载文章,或“梅斯号”自媒体发布的文章,仅系出于传递更多信息之目的,本站仅负责审核内容合规,其内容不代表本站立场,本站不负责内容的准确性和版权。如果存在侵权、或不希望被转载的媒体或个人可与我们联系,我们将立即进行删除处理。
在此留言
评论区 (2)
#插入话题
  1. [GetPortalCommentsPageByObjectIdResponse(id=1903751, encodeId=bed01903e519d, content=<a href='/topic/show?id=be285836438' target=_blank style='color:#2F92EE;'>#新技术#</a>, beContent=null, objectType=article, channel=null, level=null, likeNumber=41, replyNumber=0, topicName=null, topicId=null, topicList=[TopicDto(id=58364, encryptionId=be285836438, topicName=新技术)], attachment=null, authenticateStatus=null, createdAvatar=, createdBy=d39f177, createdName=lixiao3326, createdTime=Sat Aug 26 20:43:00 CST 2017, time=2017-08-26, status=1, ipAttribution=), GetPortalCommentsPageByObjectIdResponse(id=1375559, encodeId=898613e55592b, content=<a href='/topic/show?id=2949159989d' target=_blank style='color:#2F92EE;'>#SCIE#</a>, beContent=null, objectType=article, channel=null, level=null, likeNumber=27, replyNumber=0, topicName=null, topicId=null, topicList=[TopicDto(id=15998, encryptionId=2949159989d, topicName=SCIE)], attachment=null, authenticateStatus=null, createdAvatar=, createdBy=17a3387, createdName=jichang, createdTime=Thu Apr 20 01:43:00 CST 2017, time=2017-04-20, status=1, ipAttribution=)]
  2. [GetPortalCommentsPageByObjectIdResponse(id=1903751, encodeId=bed01903e519d, content=<a href='/topic/show?id=be285836438' target=_blank style='color:#2F92EE;'>#新技术#</a>, beContent=null, objectType=article, channel=null, level=null, likeNumber=41, replyNumber=0, topicName=null, topicId=null, topicList=[TopicDto(id=58364, encryptionId=be285836438, topicName=新技术)], attachment=null, authenticateStatus=null, createdAvatar=, createdBy=d39f177, createdName=lixiao3326, createdTime=Sat Aug 26 20:43:00 CST 2017, time=2017-08-26, status=1, ipAttribution=), GetPortalCommentsPageByObjectIdResponse(id=1375559, encodeId=898613e55592b, content=<a href='/topic/show?id=2949159989d' target=_blank style='color:#2F92EE;'>#SCIE#</a>, beContent=null, objectType=article, channel=null, level=null, likeNumber=27, replyNumber=0, topicName=null, topicId=null, topicList=[TopicDto(id=15998, encryptionId=2949159989d, topicName=SCIE)], attachment=null, authenticateStatus=null, createdAvatar=, createdBy=17a3387, createdName=jichang, createdTime=Thu Apr 20 01:43:00 CST 2017, time=2017-04-20, status=1, ipAttribution=)]
    2017-04-20 jichang

相关资讯

Nature:科学家发现细胞属性转换调控新机制

近日,中科院生化与细胞所惠利健研究组揭示了转录因子诱导细胞属性转换过程中,染色体结构的改变引起细胞属性转换。专家认为,这项研究揭示了正常细胞如何响应并抑制转录因子引发的细胞属性转变,发现了新的细胞属性检查点机制。相关研究成果日前在线发表于《细胞研究》。

Nature:肝脏的多功能,离不开细胞的精密分工

肝脏是人体新陈代谢最旺盛的器官,负责着各种生理反应,像一个巨大的“化工厂”。除了代谢功能之外,肝脏还负责肝脏还负责分泌胆汁、清除身体的毒素、表达血液中主要的载体蛋白以及免疫防御。近期,来自于以色列威兹曼科学院的研究团队在《Nature》期刊发表一篇文章揭示,肝脏之所以拥有这么多惊人的能力,与其组成细胞精密分工有关。团队负责人、威兹曼科学院分子细胞生物学系Shalev Itzkovitz教授表示:“

Nature:为什么细胞过密,状态就不好了?

如今,来自新加坡生物力学研究所(MBI)和法国Jacques Monod研究所(IJM)、国家科学研究中心(CNRS)、巴黎狄德罗大学,以及英国牛津大学居里研究所的研究学者们从人工培养的单层上皮细胞那里得到了一些重要启示。细胞层是一个具有物理性破绽的结构,这些破绽导致了部分细胞的“无辜”死亡。组织中经常发生细胞溢出现象。损伤、凋亡、死亡的细胞会被组织踢出来,就连正常健康的细胞有时也会被排挤出来。目

Biomaterials:心脏受损能用菠菜叶补?研究人员称或可行

菠菜叶或可用来修补受损心脏,这听起来匪夷所思,但美国一个研究团队阐释了这一技术的可行性。伍斯特工学院等三家美国高校的研究人员做了一系列实验,在去除了植物细胞的菠菜叶子上培植出人类心脏活细胞。研究人员说,这些实验为利用大量菠菜叶培育出健康心脏肌肉打开大门,为治疗心脏病患者带来希望。科学家在培养人体组织时面临的一个难题是如何建立起一个脉管系统,将氧气、养分和基础分子输送到被培养的人体组织。包括3D打印

抗癌新策略?修复生物钟,延缓肿瘤恶化!

一旦外压或者基因突变导致细胞周期紊乱,细胞便容易失去控制而发生癌变。科学家们已经知道生物钟紊乱与肿瘤恶化速度密切相关。那么,如果修复癌细胞的生物钟,能否逆转癌变、延缓肿瘤发展呢?近期,来自于麦克吉尔大学的研究团队以患癌小鼠为模型,证实重塑癌细胞的生物钟,能够使其恢复正常。

ELIFE:肺炎细菌如何抵御人体细胞自噬的清除作用?

吴耀文团队巧妙地利用化学方法合成制备了一系列末端修饰的LC3蛋白质复合物,利用这些化学修饰的蛋白质工具,他们研究了RavZ作用于LC3-PE的结构-效能关系,再结合结构生物学、生物物理和细胞生物学方法,首次揭示了RavZ识别和切除 LC3-PE的分子机制。一项新的研究成果揭示了细菌毒性效应子抑制细胞自噬的分子机制,该研究详细地阐释了嗜肺军团菌(Legionellapneumophila)利用其分泌