加载中........
×

Circulation:采用机器学习预测心肌梗死风险的可能性

2019-9-18 作者:MedSci   来源:MedSci原创 我要评论0
Tags: 机器学习  心肌梗死  MI3  

目前,心肌肌钙蛋白浓度随患者的年龄、性别和样本时间的变化在诊断方法中尚未得到解释。Than等人计划通过机器学习将这些变量结合起来,以提高患者个体的风险评估。

采用机器学习算法(心肌-缺血-损伤-指数[MI3]),将年龄、性别和匹配的心肌肌钙蛋白I浓度综合起来,在3013位患者中进行测试,在7998位疑诊心肌梗死的患者中进行验证。MI3采用梯度增强计算一个值(0-100)来反映个人诊断为1型心肌梗死的可能性,并估计该个人的敏感性、阴性预测值、特异性和阳性预测值。

测试队列中有404位(13.4%)患者发生心肌梗死,验证队列中有849位(10.6%)患者发生心肌梗死。在测试队列中,在特性曲线0.963以下,MI3以较高的面积获得较好的标定。在测试队列中,鉴定低风险和高风险患者的MI3阈值分别是1.6和49.7。在验证队列中,69.5%的个体对MI3值<1.6,阴性预测值为99.7%,灵敏度为97.8%;10.6%的个体的MI3值≥49.7,阳性预测值为71.8%,特异性为96.7%。采用这些阈值,MI3的诊断价值高于欧洲心脏病学会0/3小时通路(灵敏度82.5%、特异性92.2%)。

采用机器学习,MI3提供了一种对心肌梗死风险个性化的客观评估,或可用来鉴别可能受益于早期临床决策的低/高风险患者。

原始出处

Martin P. Than, et al.Machine Learning to Predict the Likelihood of Acute Myocardial Infarction.Circulation. 2019;140:899–909

本文系梅斯医学(MedSci)原创编译,转载需授权!



小提示:78%用户已下载梅斯医学APP,更方便阅读和交流,请扫描二维码直接下载APP

所属期刊:CIRCULATION 期刊论坛:进入期刊论坛
版权声明:本文系梅斯MedSci原创编译整理,未经本网站授权不得转载和使用。如需获取授权,请点击

只有APP中用户,且经认证才能发表评论!马上下载

web对话