Nature:细菌感染为什么产生疼痛?

2013-09-30 Nature Nature

近日,来自波士顿儿童医院的科学家们对小鼠模型进行研究发现耐甲氧西林金黄色葡萄球菌引起的侵入性皮肤感染及其他的严重疼痛性感染所造成的疼痛,似乎并非如从前认为的那样是由于身体免疫反应所导致,而是由这些侵入细菌自身诱导产生。并且,他们的研究证实一旦痛觉神经元“感知”这些细菌,它们会抑制免疫系统,有可能帮助增强了细菌的毒力。相关研究成果发表在8月21日的Nature。 这有可能改变医生们思考如脑膜炎、坏

近日,来自波士顿儿童医院的科学家们对小鼠模型进行研究发现耐甲氧西林金黄色葡萄球菌引起的侵入性皮肤感染及其他的严重疼痛性感染所造成的疼痛,似乎并非如从前认为的那样是由于身体免疫反应所导致,而是由这些侵入细菌自身诱导产生。并且,他们的研究证实一旦痛觉神经元“感知”这些细菌,它们会抑制免疫系统,有可能帮助增强了细菌的毒力。相关研究成果发表在8月21日的Nature。

这有可能改变医生们思考如脑膜炎、坏死性筋膜炎、泌尿道感染、龋齿和肠道感染等各种侵入性、疼痛性感染的方式。

“如果我们能够阻断感染组织的疼痛,并且能阻止痛觉神经对免疫系统的所作所为,可能有助于我们更好地治疗细菌感染,”研究的第一作者、波士顿儿童F.M. Kirby神经生物学项目部Clifford Woolf博士实验室神经免疫学家Isaac Chiu说。

在启动这项研究之前,Chiu和共同作者Christian A. Von Hehn博士曾将感觉神经元与免疫细胞放在一个培养皿中培养,观察感染过程中它们如何相互作用。“令人惊讶地是,神经元立刻对细菌做出了反应,”Chiu说。

这激励了他们转向研究活体皮肤感染模型,与波士顿儿童医院细胞和分子医学项目部Michael Carroll博士实验室的研究生Balthasar Heesters密切合作,第一次利用他们的知识来研究疼痛。

“发现痛觉神经元一旦受到细菌激活便会抑制免疫系统,同样出乎我们的意料之外。我当时想它们应该是做相反的事情,”Chiu说。

为什么激活的痛觉神经元会试图去削弱对感染的免疫反应?Chiu猜测,神经元正在致力保护组织免受炎症免疫反应造成的进一步伤害——细菌可能利用了一种保护性机制来让它们获利。

在这项研究中,Chiu和同事们检测了葡萄球菌皮肤感染小鼠的疼痛、组织肿胀、小鼠体内的免疫细胞及活菌数量。他们发现疼痛水平与活菌数量密切相关,并在组织肿胀达到最大之前到达高峰,疼痛的原因在于细菌,而不是局部的炎症反应。研究小组还证实了细菌、痛觉神经元与免疫系统关键细胞之间的沟通。

细菌“与神经元对话”

研究表明,金黄色葡萄球菌分泌了两种化合物与感觉神经元沟通,诱导疼痛:

·N-甲酰基肽(N-formyl peptides):研究小组证实,痛觉神经元携带着检测这些肽的受体:FPR1受体。当小鼠不能生成这些受体时,它们的疼痛反应减轻。

·成孔毒素(Pore-forming toxin):其他毒力细菌也分泌这些蛋白质,它们停靠感觉神经末梢,在细胞膜上形成大孔让离子进入到细胞中,触发神经发出疼痛信息。成孔毒素被称作为α毒素,已知可以帮助金黄色葡萄球菌传播至皮肤和肺。

这些研究结果表明,通过阻断FPR1受体,阻断感觉神经元上的α毒素 (ADAM10) 受体,或是通过这些孔传递药物,有可能成为阻断疼痛信号的新方法。Chiu说,这些方法还有可能阻止神经元抑制免疫反应,但这还有待证实。

抑制免疫系统

进一步的小鼠实验表明,在局部感染位点感觉神经元以两种方式抑制了免疫反应,有可能使得细菌得以繁殖:

·天然免疫:激活的痛觉神经元减少了感染第一重要救援者:中性白细胞和单核细胞的流入。当在小鼠体内通过遗传技术除去这些神经元时,免疫细胞的数量增多。研究小组进一步证实,神经元是通过一些肽分子与免疫细胞对话的。例如,一种叫做CGRP的分子阻止了巨噬细胞生成TNF-α,这一重要的信号可以召集免疫防御对抗细菌。

·引流淋巴结:通常情况下,入侵细菌的抗原会从感染位点引流到淋巴结,在那里T细胞和B细胞聚集,产生身体第二波免疫反应。研究小组证实,激活的痛觉神经元减少了T细胞和B细胞迁移到淋巴结。在除去痛觉神经元的感染小鼠体内,淋巴结中有更多的T细胞和B细胞。

研究人员计划进一步研究疼痛-细菌-免疫系统之间的关系,探讨能阻断毒力细菌感染引起的疼痛,并可能对抗免疫抑制的治疗。

Chiu 总结说:“我们发现免疫系统的主要部分并非是感染过程中疼痛的必要条件,而细菌自身才是许多疼痛的根源。在感染过程中治疗疼痛,我们或许需要考虑如何阻断致病元件本身,而不仅仅是免疫/炎症信号通路。我们还发现激活后的感觉神经元调解了免疫系统。尽管我们还没有证实,这表明了毒力菌株能够引起疼痛,使得它们可以利用神经元来抑制免疫,或许给予了它们一种优势。”

原文阅读

Chiu IM, Heesters BA, Ghasemlou N, Von Hehn CA, Zhao F, Tran J, Wainger B, Strominger A, Muralidharan S, Horswill AR, Bubeck Wardenburg J, Hwang SW, Carroll MC, Woolf CJ.Bacteria activate sensory neurons that modulate pain and inflammation.Nature. 2013 Sep 5;501(7465):52-7.

版权声明:
本网站所有内容来源注明为“梅斯医学”或“MedSci原创”的文字、图片和音视频资料,版权均属于梅斯医学所有。非经授权,任何媒体、网站或个人不得转载,授权转载时须注明来源为“梅斯医学”。其它来源的文章系转载文章,或“梅斯号”自媒体发布的文章,仅系出于传递更多信息之目的,本站仅负责审核内容合规,其内容不代表本站立场,本站不负责内容的准确性和版权。如果存在侵权、或不希望被转载的媒体或个人可与我们联系,我们将立即进行删除处理。
在此留言
评论区 (2)
#插入话题
  1. [GetPortalCommentsPageByObjectIdResponse(id=1879682, encodeId=b31218e968265, content=<a href='/topic/show?id=3b2112532d8' target=_blank style='color:#2F92EE;'>#Nat#</a>, beContent=null, objectType=article, channel=null, level=null, likeNumber=27, replyNumber=0, topicName=null, topicId=null, topicList=[TopicDto(id=12532, encryptionId=3b2112532d8, topicName=Nat)], attachment=null, authenticateStatus=null, createdAvatar=, createdBy=2e6f107, createdName=liye789132251, createdTime=Thu Oct 10 02:57:00 CST 2013, time=2013-10-10, status=1, ipAttribution=), GetPortalCommentsPageByObjectIdResponse(id=1280633, encodeId=3fd71280633ba, content=<a href='/topic/show?id=beefe810798' target=_blank style='color:#2F92EE;'>#细菌感染#</a>, beContent=null, objectType=article, channel=null, level=null, likeNumber=27, replyNumber=0, topicName=null, topicId=null, topicList=[TopicDto(id=78107, encryptionId=beefe810798, topicName=细菌感染)], attachment=null, authenticateStatus=null, createdAvatar=, createdBy=6779163, createdName=liuhuangbo, createdTime=Wed Oct 02 01:57:00 CST 2013, time=2013-10-02, status=1, ipAttribution=)]
    2013-10-10 liye789132251
  2. [GetPortalCommentsPageByObjectIdResponse(id=1879682, encodeId=b31218e968265, content=<a href='/topic/show?id=3b2112532d8' target=_blank style='color:#2F92EE;'>#Nat#</a>, beContent=null, objectType=article, channel=null, level=null, likeNumber=27, replyNumber=0, topicName=null, topicId=null, topicList=[TopicDto(id=12532, encryptionId=3b2112532d8, topicName=Nat)], attachment=null, authenticateStatus=null, createdAvatar=, createdBy=2e6f107, createdName=liye789132251, createdTime=Thu Oct 10 02:57:00 CST 2013, time=2013-10-10, status=1, ipAttribution=), GetPortalCommentsPageByObjectIdResponse(id=1280633, encodeId=3fd71280633ba, content=<a href='/topic/show?id=beefe810798' target=_blank style='color:#2F92EE;'>#细菌感染#</a>, beContent=null, objectType=article, channel=null, level=null, likeNumber=27, replyNumber=0, topicName=null, topicId=null, topicList=[TopicDto(id=78107, encryptionId=beefe810798, topicName=细菌感染)], attachment=null, authenticateStatus=null, createdAvatar=, createdBy=6779163, createdName=liuhuangbo, createdTime=Wed Oct 02 01:57:00 CST 2013, time=2013-10-02, status=1, ipAttribution=)]

相关资讯

霍金:大脑可独立于人体而存在

据英国《卫报》网站报道,史蒂芬·霍金说,他相信大脑是可以不依附于人的身体而独立存在的,而他不相信人死后还有灵魂。 日前这位伟大的理论物理学家出席了一部关于他的电影的首映仪式,他说:“我认为大脑就像是一个程序一样,和电脑有些相似,所以理论上讲把大脑复制到电脑上是可能的,这样一来,某种意义上,就能在人死后延续生命。但是这是我们现有的技术达不到的。” 这部记录霍金生平的影片从他的童年、学

Nat Neuro:研究发现人脑中也存在网格细胞

据9月《自然—神经科学》上的一项研究称,在探寻虚拟环境时,人脑会呈现网格状活动。这表明,我们身体内的导航系统即便在身体未发生物理空间意义上的移动时仍是活跃的。【原文阅读】 先前研究认为,动物对空间的感知源于被称为空间细胞(place cell)和网格细胞(grid cell)的两类神经细胞的作用,当动物进入到环境中的特定区域时,空间细胞便会活跃起来,而网格细胞负责展示这种细胞活动的空间模式,类似

Science:阿片类物质依赖性在慢性疼痛中起着作用

据一项新的研究报道,身体在损伤后对自然的、阻断痛觉的阿片类物质的依赖可能促成了慢性疼痛的出现。阻断机体对阿片类的过度使用可能会阻止急性疼痛向慢性疼痛的转变。在损伤时,机体通过释放阿片物质来阻断痛觉,没有这一过程,在手术或其它创伤性损伤之后所经历的急性疼痛将会更为严重。没有人知道慢性疼痛到底是如何产生的,且没有可供阻止慢性的治疗存在。为了探索阿片类物质在慢性疼痛中的作用,Gregory Corder

Science:暴饮暴食的大脑作用机制

60年前,科学家们利用电刺激小鼠大脑区域,诱发这些无论饥饿与否的动物进食。近期来自北卡罗来纳大学医学院的研究人员破解了这一关键的分子机制,发现了诱发此种行为的精确细胞连接。这一研究成果公布在9月27日的Science杂志上,将有助于解析肥胖的病因,并由此提出针对厌食,神经性贪食,暴饮暴食的新治疗方法。【原文下载】文章的通讯作者,北卡罗来纳大学医学院细胞生物学和生理学副教授Garret Stuber

Nat Struct Mol Biol:钠在大脑中发挥着独特的重要作用

9月5日加拿大研究人员发现,盐的主要化学成分——钠,是大脑中重要神经递质——红藻氨酸受体的一个独特“开关”。红藻氨酸受体是大脑正常功能的基础,与癫痫症和神经性疼痛等多种疾病相关。【原文下载】 麦吉尔大学药理学和药物治疗学系教授德里克·鲍伊的此项发现,为大脑如何传输信息提供了不同的观点。该项研究的重点在于开发药物的新靶点,研究结果发表在《自然·结构和分子生物学》杂志上。 红藻氨酸受体活性的平

Biomaterials:靶向Ngn2蛋白治疗脑缺血损伤

第四军医大学徐礼鲜教授课题组和西安医学院苟兴春博士课题组的研究人员研制了一种有效穿过血脑屏障靶向缺血区的蛋白质药物,这对于脑缺血损伤相关疾病的治疗具有重要意义。 这一研究成果公布在《Biomaterials》杂志上。主持这一研究的是第四军医大学徐礼鲜教授和西安医学院苟兴春博士。苟兴春博士毕业于第四军医大学,并在徐礼鲜教授指导下从事博士后研究工作,在脑血管保护和神经再生研究方面获得多项成果。【