筛选条件 共查询到500条结果
排序方式
TRPM7, Magnesium, and Signaling

期刊: INTERNATIONAL JOURNAL OF MOLECULAR SCIENCES, 2019; 20 (8)

The transient receptor potential melastatin-subfamily member 7 (TRPM7) is a ubiquitously expressed chanzyme that possesses an ion channel permeable to the divalent cations Mg2+, Ca2+, and Zn2+, and an -kinase that phosphorylates downstream substrates. TRPM7 and its homologue TRPM6 have been implicated in a variety of cellular functions and is critically associated with intracellular signaling, including receptor tyrosine kinase (RTK)-mediated pathways. Emerging evidence indicates that growth factors, such as EGF and VEGF, signal through their RTKs, which regulate activity of TRPM6 and TRPM7. TRPM6 is primarily an epithelial-associated channel, while TRPM7 is more ubiquitous. In this review we focus on TRPM7 and its association with growth factors, RTKs, and downstream kinase signaling. We also highlight how interplay between TRPM7, Mg2+ and signaling kinases influences cell function in physiological and pathological conditions, such as cancer and preeclampsia.

IF:4.18

Crosstalk between p38 and Erk 1/2 in Downregulation of FGF1-Induced Signaling

期刊: INTERNATIONAL JOURNAL OF MOLECULAR SCIENCES, 2019; 20 (8)

Mitogen-activated protein kinases (MAPK): Erk1 and Erk2 are key players in negative-feedback regulation of fibroblast growth factor (FGF) signaling. Upon activation, Erk1 and Erk2 directly phosphorylate FGF receptor 1 (FGFR1) at a specific serine residue in the C-terminal part of the receptor, substantially reducing the tyrosine phosphorylation in the receptor kinase domain and its signaling. Similarly, active Erks can also phosphorylate multiple threonine residues in the docking protein FGF receptor substrate 2 (FRS2), a major mediator of FGFR signaling. Here, we demonstrate that in NIH3T3 mouse fibroblasts and human osteosarcoma U2OS cells stably expressing FGFR1, in addition to Erk1 and Erk2, p38 kinase is able to phosphorylate FRS2. Simultaneous inhibition of Erk1/2 and p38 kinase led to a significant change in the phosphorylation pattern of FRS2 that in turn resulted in prolonged tyrosine phosphorylation of FGFR1 and FRS2 and in sustained signaling, as compared to the selective inhibition of Erks. Furthermore, excessive activation of p38 with anisomycin partially compensated the lack of Erks activity. These experiments reveal a novel crosstalk between p38 and Erk1/2 in downregulation of FGF-induced signaling.

IF:4.18

Low-Grade Inflammation Is Associated with Apathy Indirectly via Deep White Matter Lesions in Community-Dwelling Older Adults: The Sefuri Study

期刊: INTERNATIONAL JOURNAL OF MOLECULAR SCIENCES, 2019; 20 (8)

Low-grade inflammation is implicated in the pathogenesis of atherosclerosis, metabolic syndrome, and apathy as a form of vascular depression. We analyzed the brain magnetic resonance imaging findings in 259 community-dwelling older adults (122 men and 137 women, with a mean age of 68.4 years). The serum concentrations of high-sensitivity C-reactive protein (hsCRP) were measured by a quantitative enzyme-linked immunosorbent assay. Logistic regression analysis revealed that the log(10) hsCRP value and the presence of a metabolic syndrome were independently associated with confluent but not punctate deep white matter lesions (DWMLs). Path analysis based on structural equation modeling (SEM) indicated that the direct path from the log(10) hsCRP to the DWMLs was significant ( = 0.119, p = 0.039). The direct paths from the metabolic syndrome to the log(10) hsCRP and to the DWMLs were also significant. The direct path from the DWMLs to apathy ( = -0.165, p = 0.007) was significant, but the direct path from the log(10) hsCRP to apathy was not significant. Inflammation (i.e., elevated serum hsCRP levels) was associated with DWMLs independent of common vascular risk factors, while DWMLs were associated with apathy. The present analysis with SEM revealed the more realistic scheme that low-grade inflammation was associated with apathy indirectly via DWMLs in community-dwelling older adults.

IF:4.18

C-X-C Motif Chemokine Ligand 14 is a Unique Multifunctional Regulator of Tumor Progression

期刊: INTERNATIONAL JOURNAL OF MOLECULAR SCIENCES, 2019; 20 (8)

Cancer is a leading cause of death and disease worldwide, with a tremendous financial impact. Thus, the development of cost-effective novel approaches for suppressing tumor growth and progression is essential. In an attempt to identify the mechanisms responsible for tumor suppression, we screened for molecules downregulated in a cancer progression model and found that the chemokine CXCL14, also called BRAK, was the most significantly downregulated. Increasing the production of CXCL14 protein by transfecting tumor cells with a CXCL14 expression vector and transplanting the cells into the back skin of immunodeficient mice suppressed tumor cell growth compared with that of parental tumor cells, suggesting that CXCL14 suppressed tumor growth in vivo. However, some studies have reported that over-expression of CXCL14, especially in stromal cells, stimulated the progression of tumor formation. Transgenic mice expressing 10-fold more CXCL14 protein than wild-type C57BL/6 mice showed reduced rates of chemical carcinogenesis, transplanted tumor growth, and metastasis without apparent side effects. CXCL14 also acts as an antimicrobial molecule. In this review, we highlight recent studies involving the identification and characterization of CXCL14 in cancer progression and discuss the reasons for the context-dependent effects of CXCL14 on tumor formation.

IF:4.18

TRPM4 and TRPM5 Channels Share Crucial Amino Acid Residues for Ca2+ Sensitivity but Not Significance of PI(4,5)P-2

期刊: INTERNATIONAL JOURNAL OF MOLECULAR SCIENCES, 2019; 20 (8)

Transient receptor potential melastatin member 4 (TRPM4) and 5 (TRPM5) channels are Ca2+-activated nonselective cation channels. Intracellular Ca2+ is the most important regulator for them to open, though PI(4,5)P-2, a membrane phosphoinositide, has been reported to regulate their Ca2+-sensitivities. We previously reported that negatively-charged amino acid residues near and in the TRP domain are necessary for the normal Ca2+ sensitivity of TRPM4. More recently, a cryo-electron microscopy structure of Ca2+-bound (but closed) TRPM4 was reported, proposing a Ca2+-binding site within an intracellular cavity formed by S2 and S3. Here, we examined the functional effects of mutations of the amino acid residues related to the proposed Ca2+-binding site on TRPM4 and also TRPM5 using mutagenesis and patch clamp techniques. The mutations of the amino acid residues of TRPM4 and TRPM5 reduced their Ca2+-sensitivities in a similar way. On the other hand, intracellular applications of PI(4,5)P-2 recovered Ca2+-sensitivity of desensitized TRPM4, but its effect on TRPM5 was negligible. From these results, the Ca2+-binding sites of TRPM4 and TRPM5 were shown to be formed by the same amino acid residues by functional analyses, but the impact of PI(4,5)P-2 on the regulation of TRPM5 seemed to be smaller than that on the regulation of TRPM4.

IF:4.18

Oxidative Stress-Tolerant Stem Cells from Human Exfoliated Deciduous Teeth Decrease Hydrogen Peroxide-Induced Damage in Organotypic Brain Slice Cultures from Adult Mice

期刊: INTERNATIONAL JOURNAL OF MOLECULAR SCIENCES, 2019; 20 (8)

Oxidative stress causes severe tissue injury of the central nervous system in ischemic brain damage (IBD), traumatic brain injury (TBI) and neurodegenerative disorders. In this study, we used hydrogen peroxide (H2O2) to induce oxidative stress in organotypic brain slice cultures (OBSCs), and investigated the protective effects of oxidative stress-tolerant (OST) stem cells harvested from human exfoliated deciduous teeth (SHED) which were co-cultivated with OBSCs. Using presto blue assay and immunostaining, we demonstrated that both normal SHED and OST-SHED could prevent H2O2-induced cell death, and increase the numbers of mature neuron and neuronal progenitors in the hippocampus of OBSCs. During co-cultivation, OST-SHED, but not normal SHED, exhibited neuronal cell morphology and expressed neuronal markers. Results from ELISA showed that both normal SHED and OST-SHED significantly decreased oxidative DNA damage in H2O2-treated OBSCs. SHED could also produce neurotrophic factor BDNF (brain derived neurotrophic factor) and promoted the production of IL-6 in OBSCs. Although OST-SHED had lower cell viability, the neuronal protection of OST-SHED was significantly superior to that of normal SHED. Our findings suggest that SHED, especially OST-SHED, could prevent oxidative stress induced brain damage. OST-SHED can be explored as a new therapeutic tool for IBD, TBI and neurodegenerative disorders.

IF:4.18

European Patent in Immunoncology: From Immunological Principles of Implantation to Cancer Treatment

期刊: INTERNATIONAL JOURNAL OF MOLECULAR SCIENCES, 2019; 20 (8)

The granted European patent EP 2 561 890 describes a procedure for an immunological treatment of cancer. It is based on the principles of the HLA-supported communication of implantation and pregnancy. These principles ensure that the embryo is not rejected by the mother. In pregnancy, the placenta, more specifically the trophoblast, creates an interface between the embryo/fetus and the maternal immune system. Trophoblasts do not express the original HLA identification of the embryo/fetus (HLA-A to -DQ), but instead show the non-classical HLA groups E, F, and G. During interaction with specific receptors of NK cells (e.g., killer-immunoglobulin-like receptors (KIR)) and lymphocytes (lymphocyte-immunoglobulin-like receptors (LIL-R)), the non-classical HLA groups inhibit these immunocompetent cells outside pregnancy. However, tumors are known to be able to express these non-classical HLA groups and thus make use of an immuno-communication as in pregnancies. If this occurs, the prognosis usually worsens. This patent describes, in a first step, the profiling of the non-classical HLA groups in primary tumor tissue as well as metastases and recurrent tumors. The second step comprises tailored antibody therapies, which is the subject of this patent. In this review, we analyze the underlying mechanisms and describe the currently known differences between HLA-supported communication of implantation and that of tumors.

IF:4.18

Dose-Dependent Effect of Hyperbaric Oxygen Treatment on Burn-Induced Neuropathic Pain in Rats

期刊: INTERNATIONAL JOURNAL OF MOLECULAR SCIENCES, 2019; 20 (8)

Hyperbaric oxygen treatment (HBOT) has been used to reduce neuropathic pain. Melatonin and opioid receptors are involved in neuropathic pain, but it is not known if HBOT works through these pathways to achieve its antinociceptive effect. We divided anesthetized rats into two treatment and three sham groups. The two treatment groups received third-degree burns on their right hind paws, one treated in a hyperbaric chamber for a week and the other for two weeks. We evaluated the mechanical paw-withdrawal threshold (MWT) and expression of melatonin receptor 1 (MT1), melatonin receptor 2 (MT2), (MOR) and (KOR) opioid receptor, brain-derived neurotrophic factor (BDNF), Substance P, and calcitonin gene-related peptide (CGRP) in cuneate nucleus, dorsal horn, and hind paw skin by immunohistochemical, immunofluorescence assays and real-time quantitative polymerase chain reaction (RT-PCR). The group receiving one-week HBOT had increased expressions of MT1, MT2, MOR and KOR and decreased expressions of BDNF, Substance P, and CGRP. Their mechanically measured pain levels returned to normal within a week and lasted three weeks. This anti-allodynia effect lasted twice as long in those treated for two weeks. Our findings suggest that increasing the duration of HBOT can reduce burn-induced mechanical allodynia for an extended period of time in rats. The upregulation of melatonin and opioid receptors observed after one week of HBOT suggests they may be partly involved in attenuation of the mechanical allodynia. Downregulation of BDNF, substance P and CGRP may have also contributed to the overall beneficial effect of HBOT.

IF:4.18

Beyond PD-L1 Markers for Lung Cancer Immunotherapy

期刊: INTERNATIONAL JOURNAL OF MOLECULAR SCIENCES, 2019; 20 (8)

Immunotherapy using immune checkpoints inhibitors has become the standard treatment for first and second line therapy in patients with non-small cell lung cancer (NSCLC). However, proper predictive factors allowing precise qualification of NSCLC patients for immunotherapy have not been developed so far. Expression of PD-L1 on tumor cells and tumor mutation burden are used in qualification of patients to first line therapy with pembrolizumab and atezolizumab in combination with ipilimumab in prospective clinical trials. Nevertheless, not all patients with these predictive factors benefit from immunotherapy. Major methodological difficulties in testing of these factors and in the interpretation of test results still exist. Therefore, other predictive factors are sought. Intensive research on the recognition of tumor immunophenotype and gut microbiome in NSCLC patients are underway. The first correlations between the effectiveness of immunotherapy and the intensity of inflammatory response in the tumor, microbiome diversity, and the occurrence of certain bacterial species in gut have been described. The purpose of our manuscript is to draw attention to factors affecting the efficacy of immunotherapy with anti-PD-L1 antibodies in NSCLC patients. Additional markers, for example TMB (tumor mutations burden) or microbiome profile, are needed to more accurately determine which patients will benefit from immunotherapy treatment.

IF:4.18

Curcumin: New Insights into an Ancient Ingredient against Cancer

期刊: INTERNATIONAL JOURNAL OF MOLECULAR SCIENCES, 2019; 20 (8)

Cancer patients frequently use complementary medicine. Curcumin (CUR) and its derivates (from the extract of Curcuma longa L.) represent some of the most frequently used ones, having a long history in traditional Asian medicine. CUR was demonstrated, both in vitro and in vivo, to have significant anti-inflammatory effects, thus potentially counteracting cancer-promoting inflammation, which is a hallmark of cancer. CUR modulate a plethora of signaling pathways in cancer cells, comprising the NF-B (nuclear factor k-light-chain-enhancer of activated B cells), the JAK/STAT (Janus-Kinase/Signal Transducers and Activators of Transcription), and the TGF- (transforming growth factor-) pathways. Furthermore, CUR confers properties of electron receptors, which destabilize radical oxygen species (ROS), explaining its antioxidant and anti-apopototic effects. Although CUR has a low bioavailability, its role in advanced cancer treatment and supportive care was addressed in numerous clinical trials. After promising results in phase I-II trials, multiple phase III trials in different indications are currently under way to test for direct anti-cancer effects. In addition, CUR exerts beneficial effects on cancer treatment-related neurotoxcity, cardiotoxicity, nephrotoxicity, hemato-toxicity, and others. More efficient galenic formulations are tested to optimze CUR's usability in cancer treatment. This review should provide a comprehensive overview of basic science, and pre-clinical and clinical data on CUR in the field of oncology.

IF:4.18

Characterization and Dye Decolorization Potential of Two Laccases from the Marine-Derived Fungus Pestalotiopsis sp.

期刊: INTERNATIONAL JOURNAL OF MOLECULAR SCIENCES, 2019; 20 (8)

Two laccase-encoding genes from the marine-derived fungus Pestalotiopsis sp. have been cloned in Aspergillus niger for heterologous production, and the recombinant enzymes have been characterized to study their physicochemical properties, their ability to decolorize textile dyes for potential biotechnological applications, and their activity in the presence of sea salt. The optimal pH and temperature of PsLac1 and PsLac2 differed in relation to the substrates tested, and both enzymes were shown to be extremely stable at temperatures up to 50 degrees C, retaining 100% activity after 3 h at 50 degrees C. Both enzymes were stable between pH 4-6. Different substrate specificities were exhibited, and the lowest K-m and highest catalytic efficiency values were obtained against syringaldazine and 2,6-dimethoxyphenol (DMP) for PsLac1 and PsLac2, respectively. The industrially important dyesAcid Yellow, Bromo Cresol Purple, Nitrosulfonazo III, and Reactive Black 5were more efficiently decolorized by PsLac1 in the presence of the redox mediator 1-hydroxybenzotriazole (HBT). Activities were compared in saline conditions, and PsLac2 seemed more adapted to the presence of sea salt than PsLac1. The overall surface charges of the predicted PsLac three-dimensional models showed large negatively charged surfaces for PsLac2, as found in proteins for marine organisms, and more balanced solvent exposed charges for PsLac1, as seen in proteins from terrestrial organisms.

IF:4.18

Nonsteroidal Anti-Inflammatory Drugs Prevent Vincristine-Dependent Cancer-Associated Fibroblasts Formation

期刊: INTERNATIONAL JOURNAL OF MOLECULAR SCIENCES, 2019; 20 (8)

Vincristine is used in the clinical treatment of colon cancer, especially in patients diagnosed in the advanced phase of cancer development. Unfortunately, similar to other agents used during antitumor therapy, vincristine might induce chemoresistance. Studies of this process focus mainly on the analysis of the molecular mechanisms within cancer, usually ignoring the role of stromal cells. Our present findings confirm that vincristine stimulates the secretion of tumor growth factors class beta and interleukin-6 from cancer-associated fibroblasts as a result of paracrine stimulation by cancer cells. Based on alterations in morphology, modulation of capillary formation, and changes in endothelial and mesenchymal marker profile, our findings demonstrate that higher levels of tumor growth factor-s and interleukin-6 enhance cancer-associated fibroblast-like cell formation through endothelial-mesenchymal transition and that nonsteroidal anti-inflammatory drug treatment (aspirin and ibuprofen) is able to inhibit this phenomenon. The process appears to be regulated by the rate of microtubule polymerization, depending on -tubulin composition. While higher levels of tubulin-2 and tubulin-4 caused slowed polymerization and reduced the level of factors secreted to the extracellular matrix, tubulin-3 induced the opposite effect. We conclude that nonsteroidal anti-inflammatory drugs should be considered for use during vincristine monotherapy in the treatment of patients diagnosed with colorectal cancer.

IF:4.18

The Antioxidant from Ethanolic Extract of Rosa cymosa Fruits Activates Phosphatase and Tensin Homolog In Vitro and In Vivo: A New Insight on Its Antileukemic Effect

期刊: INTERNATIONAL JOURNAL OF MOLECULAR SCIENCES, 2019; 20 (8)

Rosa cymosa Tratt is a Chinese herbal remedy that is used in the treatment of diarrhea, burns, rheumatoid arthritis, and hemorrhage. Despite its use in Asian folk medicine, there are limited reports on the biological activity of R. cymosa fruits. This study focused on the investigation of the antitumor effect of the antioxidative ethanolic extract of R. cymosa fruits (RCE) along with its underlying mechanism of action. RCE showed a potent cytotoxic effect against Sup-T1 and Molt-4 lymphoblastic leukemia cells. In the xenograft animal model, the tumor size was significantly reduced to about 59.42% in the RCE-treated group in comparison with the control group. The use of RCE (37.5, 75, or 150 g/mL) triggered apoptosis by 26.52-83.49%, disrupted mitochondrial membrane potential (MMP) by 10.44-58.60%, and promoted calcium release by 1.29-, 1.44-, and 1.71-fold compared with the control group. The extract induced redox oxygen species (ROS) generation through the elimination of Nrf2/Keap1/P62-mediated oxidative stress response. The loss of phosphatase and tensin homolog (PTEN) activation by RCE impaired PI3K/Akt/Foxo and Jak/Stat activation pathways, which contributed to tumorigenesis. These multiple targets of R. cymosa against hematologic cancer cells suggested its potential application as an antileukemic dietary supplement.

IF:4.18

Dysregulation of Circular RNAs in Myotonic Dystrophy Type 1

期刊: INTERNATIONAL JOURNAL OF MOLECULAR SCIENCES, 2019; 20 (8)

Circular RNAs (circRNAs) constitute a recently re-discovered class of non-coding RNAs functioning as sponges for miRNAs and proteins, affecting RNA splicing and regulating transcription. CircRNAs are generated by back-splicing, which is the linking covalently of 3- and 5-ends of exons. Thus, circRNA levels might be deregulated in conditions associated with altered RNA-splicing. Significantly, growing evidence indicates their role in human diseases. Specifically, myotonic dystrophy type 1 (DM1) is a multisystemic disorder caused by expanded CTG repeats in the DMPK gene which results in abnormal mRNA-splicing. In this investigation, circRNAs expressed in DM1 skeletal muscles were identified by analyzing RNA-sequencing data-sets followed by qPCR validation. In muscle biopsies, out of nine tested, four transcripts showed an increased circular fraction: CDYL, HIPK3, RTN4_03, and ZNF609. Their circular fraction values correlated with skeletal muscle strength and with splicing biomarkers of disease severity, and displayed higher values in more severely affected patients. Moreover, Receiver-Operating-Characteristics curves of these four circRNAs discriminated DM1 patients from controls. The identified circRNAs were also detectable in peripheral-blood-mononuclear-cells (PBMCs) and the plasma of DM1 patients, but they were not regulated significantly. Finally, increased circular fractions of RTN4_03 and ZNF609 were also observed in differentiated myogenic cell lines derived from DM1 patients. In conclusion, this pilot study identified circRNA dysregulation in DM1 patients.

IF:4.18

Aquaporin Channels in the HeartPhysiology and Pathophysiology

期刊: INTERNATIONAL JOURNAL OF MOLECULAR SCIENCES, 2019; 20 (8)

Mammalian aquaporins (AQPs) are transmembrane channels expressed in a large variety of cells and tissues throughout the body. They are known as water channels, but they also facilitate the transport of small solutes, gasses, and monovalent cations. To date, 13 different AQPs, encoded by the genes AQP0-AQP12, have been identified in mammals, which regulate various important biological functions in kidney, brain, lung, digestive system, eye, and skin. Consequently, dysfunction of AQPs is involved in a wide variety of disorders. AQPs are also present in the heart, even with a specific distribution pattern in cardiomyocytes, but whether their presence is essential for proper (electro)physiological cardiac function has not intensively been studied. This review summarizes recent findings and highlights the involvement of AQPs in normal and pathological cardiac function. We conclude that AQPs are at least implicated in proper cardiac water homeostasis and energy balance as well as heart failure and arsenic cardiotoxicity. However, this review also demonstrates that many effects of cardiac AQPs, especially on excitation-contraction coupling processes, are virtually unexplored.

IF:4.18

共500条页码: 1/34页15条/页