笔记详情
标题
信号网络模型缺点与不足
内容
Limitations of the Current Analysis

Network topology. Our graph reconstruction is incomplete, as new signaling molecules will certainly be discovered. Novel nodes may give identity to the intermediary nodes that our model currently incorporates. Discovery of a new interaction among known nodes could simplify the graph by reducing (apparent) redundancy. For example, if it is found that GPA1 → OST1, the simplest interpretation of the ABA → ROS pathway becomes ABA → GPA1 → OST1 → ROS, and the graph loses one edge and an alternative pathway. As an effect, the graph's robustness will be attenuated. Among likely candidates for network reduction are the components currently situated immediately downstream of ABA because, in the absence of information about guard cell ABA receptors [94], we assumed that ABA independently regulates eight components. It is also possible that a newly found interaction will not change the existing edges, but only add a new edge. A newly added positive regulation edge will further increase the redundancy of signaling and correspondingly its robustness. Newly added inhibitory edges could possibly damage the network's robustness if they affect the main positive regulators of the network, especially anion channels and membrane depolarization. For example, experimental evidence indicates that abi1 abi2 double recessive mutants are more sensitive to ABA-induced stomatal closure than abi1 or abi2 single recessive mutants [29], suggesting that ABI1 and ABI2 act synergistically. Due to limited experimental evidence, we do not explicitly incorporate ABI2, but an independent inhibitory effect of ABI2 would diminish ABA signaling.

While it is difficult to estimate the changes in our conclusions due to future knowledge gain, we can gauge the robustness of our results by randomly deleting entries in Table S1 or rewiring edges of Figure 2 (see Texts S2 and S3). We find that most of the predicted important nodes are documented in more than one entry, and more than one entry needs to be removed from the database before the topology of the network related to that node changes (Text S2). Random rewiring of up to four edge pairs shows that the dynamics of our current network is moderately resilient to minor topology changes (Text S3 and Figure S1).

Dynamic model. In our dynamic model we do not place restrictions on the relative timing of individual interactions but sample all possible updates randomly. This approach reflects our lack of knowledge concerning the relative reaction speeds as well as possible environmental noise. The significance of our current results is the prediction that whatever the timing is, given the current topology of regulatory relationships in the network, the most essential regulators will not change. Our approach can be iteratively refined when experimental results on the strength and timing of individual interactions become available. For example, we can combine Boolean regulation with continuous synthesis and degradation of small molecules or signal transduction proteins [95,96] as kinetic (rate) data emerge. Our model considers the response of individual guard cell pairs to the local ABA signal; however, there is recent evidence of a synchronized oscillatory behavior of stomatal apertures over spatially extended patches in response to a decrease in humidity [97]. Our model can be extended to incorporate cell-to-cell signaling and spatial aspects by including extracellular regulators when information about them becomes available (see [51]).

Node disruptions. A knockout may either deprive the system of an essential signaling element (the gene itself), or it may “set” the entire system into a different state (e.g., by affecting the baseline expression of other, seemingly unrelated signaling elements). Our analysis and current experimental data only address the former. Because of this caveat, in some ways rapid pharmacological inhibition may actually have a more specific effect on the cell than gene

点击翻译
来源
PLoS Biol. 2006 October; 4(10): e312.
类别
领域
Plant Science