JMC:金坚教授团队发现首个靶向AKT变构位点的PROTAC

2022-10-30 缪可研 精准药物

JMC:金坚教授团队发现首个靶向AKT变构位点的PROTAC

AKT是癌症治疗的一个重要靶点。近年来,在开发ATP竞争性的活性位点和变构位点的AKT抑制剂方面取得了重大进展,多款AKT小分子抑制剂获批临床。此外,研究人员也开发了多种基于AKT活性位点的PROTAC,包括MS21。MS21可以有效诱导PI3K/pten通路突变的肿瘤细胞中AKT的降解,并有效抑制肿瘤细胞增殖生长,但在KRAS/BRAF突变细胞中却显得束手无策,无法降解AKT蛋白。

近日,西奈山伊坎医学院金坚教授团队和Ramon E. Parsons团队在知名药物化学期刊JMC上发表题为“Novel Allosteric Inhibitor-Derived AKT Proteolysis Targeting Chimeras (PROTACs) Enable Potent and Selective AKT Degradation in KRAS/BRAF Mutant Cells”的文章。

作者开发了首个基于变构位点的新型AKT  PROTAC 62,并且化合物62在KRAS/BRAF突变的癌细胞以及PI3k/pten突变的癌细胞中均显示出强效的AKT降解活性和抗增殖活性。此外,62在通过腹腔内给药的小鼠体内表现出良好的生物利用度和PK性质。

1、AKT靶点介绍

AKT(蛋白激酶b)是一种丝氨酸/苏氨酸激酶,属于丝氨酸蛋白激酶家族。AKT作为人类癌症中最常见的PI3K/AKT/m-TOR信号级联的中心节点,在调节癌症特征中发挥关键作用,如细胞增殖、代谢、转移、侵袭性和肿瘤细胞的存活(图1)。

AKT由三个高度同源的亚型组成,AKT1/2/3,它们都有三个进化上保守的结构域:一个N端PH结构域,一个中心激酶催化结构域和一个C端调控结构域。研究表明,AKT的过度活化和过表达与许多总体预后较差的人类癌症有关。

图1.AKT介导的信号通路

2、AKT小分子抑制剂研究进展

AKT是一种极具临床潜力的药物靶点。在过去数十年来,基于AKT领域的药物研发已经取得了积极的研究成果,多款AKT小分子抑制剂相继获批临床,包括靶向AKT活性位点的小分子抑制剂:GSK690693GDC-0068AZD5363和靶向AKT变构位点的抑制剂:MK-2206ARQ-092TAS-117。进展最快的是罗氏的GDC-0068和阿斯利康的AZD5363,目前均处于临床三期。

然而,基于活性位点的AKT抑制剂具有严重的副作用,包括高血糖、血小板减少和感染,而AKT变构抑制剂在人体临床试验中也表现出有限的疗效。

图2.进入临床试验的AKT小分子抑制剂

3、已报道的基于活性位点抑制剂的AKT PROTAC

基于靶向蛋白水解嵌合体PROTAC或分子胶的靶向蛋白降解技术(TPD)是一种通过降解致病靶蛋白来治疗疾病的治疗策略。通常,由PROTAC或分子胶诱导的泛素−蛋白酶体系统(UPS)介导的降解可以同时靶向癌蛋白的催化和非催化结构域,这可能产生比小分子激酶抑制剂更大的疗效。

近年来,研究人员已经开发了多种靶向活性位点的AKT PROTAC(图3),其中,MS21是已报道最有效的AKT降解剂,然而MS21不能有效诱导携带KRASBRAF突变的癌细胞中AKT的降解。为了克服MS21等靶向活性位点PROTAC在携带KRAS/BRAF突变的癌细胞较差的降解AKT能力。作者另辟蹊径,试图从AKT的变构抑制剂切入,开发新型的靶向变构位点的AKT降解剂。

图3.已报道的靶向活性位点的AKT PROTAC

下面让我们一起走进这篇文献:

1. 基于ARQ-092 PROTAC的设计思路及合成

研究表明,与ATP竞争性结合的AKT活性位点抑制剂优先结合激活的AKT(磷酸化的AKT,p-AKT)。由于在KRAS/BRAF突变的肿瘤细胞系中,磷酸化AKT蛋白水平较低,这就影响了与ATP竞争性结合的活性位点抑制剂的效果,从而导致耐药。

与靶向活性位点抑制剂不同,AKT变构抑制剂可以结合并稳定AKT的失活形式。因此,靶向AKT变构位点的PROTAC有可能在含有KRAS/BRAF突变的癌细胞中参与结合失活的AKT,这就可能诱导MS21耐药肿瘤细胞系中AKT的降解。

首先,作者选取了AKT变构抑制剂ARQ-092作为AKT PROTAC的靶头化合物,随后通过对ARQ-092与AKT1的晶体复合物进行分析,作者发现ARQ-092中的左侧苯环伸向溶剂区(图4)。因此,作者选用该位点作为连接位点进行衍生化,分别合成了末端是羧基和氨基的化合物1(末端羧基)和2(末端氨基)。随后,作者基于化合物12开展PROTAC合成工作。

图4. ARQ-092与AKT1的晶体复合物及化合物1和2的化学结构

VHL配体VHL-1和CRBN配体泊马度胺是最常用的两种E3泛素连接酶配体。作者同时采用这两种E3配体,分别合成了基于VHL配体和CRBN配体两种类型的AKT PROTAC。

最先开展的是基于化合物1(末端羧基)的PROTAC合成(图5)。其中,化合物3-20是基于VHL配体的PROTAC,作者分别合成了不同长度的聚乙二醇和烷烃链两种类型PROTAC。同时作者也合成了基于泊马度胺的PROTAC 21-32,同样采用了不同长度的聚乙二醇和烷烃链两种连接链类型。

图5.基于化合物1的AKT PROTAC

接下来,作者合成了基于化合物2(末端氨基)PROTAC 33-61(图6)。其中,化合物33-49是基于VHL配体的PROTAC,化合物50-61是基于泊马度胺的PROTAC。并且作者同样也考察了不同长度的聚乙二醇和烷烃链的连接链类型,其中化合物33-4157-61是聚乙二醇类型的PROTAC,化合物42-4950-56是烷烃链类型的PROTAC。

图6.基于化合物2的AKT PROTAC

2. PROTAC蛋白降解能力初筛实验

接下来,作者在PC3细胞系(人前列腺癌细胞)上筛选合成的PROTAC 3-61对AKT蛋白的降解能力(图7)。蛋白降解实验表明基于VHL配体的PROTAC比基于泊马度胺的PROTAC具有更强的降解能力,且烷烃链比聚乙二醇链更有效。作者从构效关系研究发现了PROTAC 20、48和49具有较强的AKT降解能力,并可以有效抑制下游信号传导,如:p-akt、p-pras40和p-s6。

 

图7. 化合物3-61的蛋白降解实验

3. 基于最优化合物20的进一步结构优化及后续生物活性研究

有研究表明,VHL-2(VHL-1中苄位甲基取代的结构)对VHL具有更高的亲和力。因此,作者选用了降解活性最好的PROTAC 20进行进一步结构改造,将20中的VHL-1替换成具有更高亲和力的VHL-2,得到了PROTAC 62。作者也分别合成了化合物63和64作为阴性对照化合物(图8)。

图8. PROTAC 62及阴性对照63和64的化学结构

首先,作者分别测试了PROTAC 62、6364及靶头化合物ARQ-092对AKT三种不同亚型(AKT1、AKT2、AKT3)的酶抑制活性(图9)。实验结果显示,相较于靶头化合物ARQ-092,PROTAC表现出减弱的抑制活性,但对于AKT1/2/3都具有抑制活性。

 

图9. PROTAC 62、63、64及ARQ-092的酶活测试

接下来,作者测试了PROTAC 62、63、64在MS21(已报道的降解活性最好的靶向活性位点PROTAC)耐药且KRAS突变的结直肠癌细胞系SW620的降解活性(图10)。实验结果表明,化合物62能够呈现浓度依赖方式有效诱导SW620中的AKT降解,且DC5023±16 nM,而阴性对照6364无降解活性。

图10.化合物62在sw620中的降解实验

随后,作者比较了62MS21在其他几种携带KRAS或BRAF突变的癌细胞类型中的AKT降解效应(图11)。蛋白质印迹实验发现,化合物62可以有效诱导各种KRAS或BRAF突变的癌细胞中AKT的降解,而MS21表现出较差的AKT降解能力。

图11. 62和MS21在各种携带KRAS或BRAF突变的癌细胞蛋白降解实验

作者继续在SW620细胞系进行了蛋白降解机制研究(图12),实验结果表明化合物62可以以时间依赖的方式诱导AKT降解,并可以有效抑制磷酸化PRAS40蛋白水平。当加入NAE抑制剂MLN4924或蛋白酶体抑制剂MG132后,可以有效逆转AKT的降解效果。基于上述实验结果,作者认为化合物62诱导AKT蛋白的降解效果依赖于泛素蛋白酶体途径。

图12. 蛋白降解机制研究实验

为了探究PROTAC 62蛋白质组范围内的降解选择性,作者对化合物62进行了基于全局串联质谱标签TMT定量蛋白分析的蛋白质组学研究,实验结果表明化合物62不能降解其他靶点蛋白,具有较好的靶点选择性(图13)。

图13.化合物62的蛋白质组学研究

接下来,作者在SW620细胞系上测试了化合物62、靶头化合物ARQ-092、阴性对照64及降解剂MS21的抗增殖活性(图14)。从细胞集落形成实验可以看出,化合物62对SW620抑制活性与ARQ-092相当,而阴性对照化合物64和MS21表现出较弱抑制活性。

图14. 化合物62、64、ARQ-092、MS21的细胞集落形成实验

最后,作者对化合物62进行了PK研究(图14),评估化合物62在小鼠体内的生物利用度。实验结果发现在给药后0.5 h可达到最大血药浓度(Cmax = 1 μM),血药浓度保持在100 nM以上至少可维持12小时。这些结果表明,化合物62表现出较好的PK性质,在体内可以获得足够的血浆暴露。

图14. 化合物62在小鼠血浆浓度测试

总结

金坚课题组报道了首个靶向变构位点的AKT PROTAC 62,PRORAC 62能够有效诱导KRAS/BRAF突变肿瘤细胞的AKT降解,这可能为靶向活性位点的MS21耐药KRAS/BRAF突变癌症提供一个潜在的策略。同时,化合物62表现出较强的降解活性、较好的靶点选择性以及较好的PK性质,这是靶向AKT PROTAC领域的一大步,也是靶向AKT领域的药物研发的一大步。

西奈山伊坎医学院金坚教授团队长期深耕于靶向蛋白降解领域,致力于蛋白降解药物的设计与开发,以及推进这些技术的临床应用与转化。该团队已经成功开发了多种靶点的PROTAC,克服了传统小分子药物的种种缺陷,为靶向蛋白降解领域的研发不断注入强心剂。包括:组蛋白甲基转移酶NSD家族NSD2/3,激酶家族AKT和ALK,EGFR以及表观遗传家族靶点EZH2等。

此外,金坚教授团队也开发了其他新型PROTAC技术:

1、叶酸包裹的Folate-Caged PROTACs,该类PROTAC进一步提高了PROTAC的细胞选择性。

2、基于寡核苷酸链的TF-PROTACs,成功实现了对不可成药转录因子的降解。

3、光诱导PROTACopto-PROTAC,实现了PROTAC的可控激活。

4、靶向WDR5 和Ikaros的双靶点PROTAC

5、开发新型的E3连接酶KEAP1配体,并成功用于BRD3/4的降解。进一步拓展了靶向蛋白质降解的有限工具箱。

参考文献

1、Novel Allosteric Inhibitor-Derived AKT Proteolysis TargetingChimeras (PROTACs) Enable Potent and Selective AKT Degradation in KRAS/BRAF Mutant Cells.J Med Chem (IF: 7.45; Q1) . 2022 Oct 27;65(20):14237-14260.

2、Exploiting the PI3K/AKT pathway for cancer drug discovery. Nat. Rev. Drug Discovery 2005, 4 (12), 988−1004.

3、Harnessing the E3 Ligase KEAP1 for Targeted Protein Degradation. DOI: 10.1021/jacs.1c04841. J. Am. Chem. Soc.2021, 143, 37, 15073–15083

4、4、TF-PROTACs Enable Targeted Degradation of Transcription Factors.J. Am. Chem. Soc.2021, 143, 23, 8902–8910. doi.org/10.1021/jacs.1c03852

版权声明:
本网站所有内容来源注明为“梅斯医学”或“MedSci原创”的文字、图片和音视频资料,版权均属于梅斯医学所有。非经授权,任何媒体、网站或个人不得转载,授权转载时须注明来源为“梅斯医学”。其它来源的文章系转载文章,或“梅斯号”自媒体发布的文章,仅系出于传递更多信息之目的,本站仅负责审核内容合规,其内容不代表本站立场,本站不负责内容的准确性和版权。如果存在侵权、或不希望被转载的媒体或个人可与我们联系,我们将立即进行删除处理。
在此留言
评论区 (0)
#插入话题

相关资讯

ArQule在第30届EORTC / AACR / NCI研讨会上介绍了ARQ 751的全新数据

ArQule制药在爱尔兰都柏林举行的第30届EORTC / AACR / NCI研讨会上,以三张海报的形式介绍ARQ 751的临床和临床前数据。所提供的数据突出了来自ARQ 751-101的临床数据,ARQ 751-101是一项针对具有AKT,PI3K或PTEN遗传突变的难治性和/或转移性成年肿瘤患者的I期临床研究。

Blood:活化的AKT通过过度激活Notch1触发CLL→Richter转化

Richter综合征是一类少见的淋巴造血系统综合征。由一种细胞类型的白血病转化为或并发另一种细胞类型的淋巴瘤,即经典型Richter's综合征;此外,由一种细胞的白血病、淋巴瘤转化为或并发另一种细胞的

Exp Eye Res:MicroRNA-218-5p通过PI3K / Akt / mTOR信号通路靶向EGFR抑制翼状胬肉上皮细胞的迁移和增殖

天津市眼科医院的Han S等人近日在Exp Eye Res杂志上发表了一项重要工作。翼状胬肉是一种常见的眼表疾病,可引起各种眼表症状。微RNA在各种眼部疾病的发展中起重要作用。然而,对于microRNA在翼状胬肉中的发病机制中的作用很少研究。他们的研究旨在分析人的翼状胬肉组织和培养的人翼状胬肉上皮细胞(hPECs)中miR-218-5p与表皮生长因子受体(EGFR)之间的关系。另外,他们还首次发现

Stem cells:激活AKT-mTOR信号,可促进间充质干细胞的肌腱发生过程。

由于目前对肌腱发生过程的认识有限,在临床上肌腱修复仍有一定困难。I型胶原(胶原I)和其他细胞外基质的合成对肌腱的分化和稳态均至关重要。当前关于肌腱发生的研究主要集中在肌腱的转录因子,而在转录水平调控肌腱发生的信号仍存在很大未知。有研究人员发现雷帕霉素(mTOR)信号的机械性靶点可被原生生长因子、转化生长因子β1和胰岛素样生长因子I激活。在间充质干细胞(MSCs)形成肌腱的过程中mTOR的表达上调。

癌症领域新发现!——p53和Akt途径间竟有联系?

激活位于细胞表面的称为PI3K / Akt的细胞通路的突变通常也与癌症中细胞的失控生长有关。

Blood:IGF-1通过激活Akt促进血小板生成

中心点:IGF-1可促进MK分化、形成血小板前体以及血小板释放。IGF-1对血栓形成的影响主要受SRC-3协助AKT激活所介导。摘要:众所周知,胰岛素样生长因子-1(IGF-1)还可作为造血生长因子,但其对血栓形成的直接作用尚不清楚。近日,Blood杂志上发表一篇文章,Shilei Chen等人发现IGF-1可促进CD34+细胞分化成巨核细胞(MKs),并能促进体外培养的MKs细胞形成血小板前体(