【协和医学杂志】间充质干细胞对脑缺血性再灌注损伤的保护作用

2023-09-01 协和医学杂志 协和医学杂志 发表于加利福尼亚

本文从脑缺血再灌注损伤的病理生理机制出发,结合MSCs与脑缺血再灌注损伤的关系进行阐述,以期为脑缺血再灌注损伤的治疗提供新思路。

脑缺血再灌注损伤是心脏骤停、脑卒中等神经系统疾病的主要病理生理过程,其经典机制主要包括:氧化应激、炎症反应、钙超载、一氧化氮(NO)损伤、兴奋性氨基酸毒性作用等[1]。目前,国内外针对脑缺血再灌注损伤的治疗已开展诸多探索性研究,且仍在不断创新。近年来研究发现,MSCs具有分化、调节免疫及炎症反应、抗氧化和调节Ca2+水平的功能,其对于脑缺血再灌注损伤具有一定的保护作用。因此,本文从脑缺血再灌注损伤的病理生理机制出发,结合MSCs与脑缺血再灌注损伤的关系进行阐述,以期为脑缺血再灌注损伤的治疗提供新思路。

1 脑缺血再灌注损伤的主要机制

大脑仅占人体体重的2%,却占据15%的心输出量、全身25%的耗氧量,大脑对缺氧及缺血非常敏感。心脏骤停、脑卒中等疾病发生时,由于血流动力学处于停滞状态,相应供血区域的脑组织出现缺血缺氧而损伤,血供恢复后,缺血缺氧产生的代谢产物与来自新鲜血液的氧自由基发生剧烈反应,同时对器官和组织造成损害,因缺血及再灌注对脑组织造成的损伤称为缺血再灌注损伤[2]。氧化应激、炎症反应、钙超载、NO损伤、兴奋性氨基酸毒性作用等是其经典机制。

1.1 氧化应激

活性氧(ROS)是氧在反应过程中被不完全还原所形成的物质[3],是一种化学性质活泼的含氧代谢物,主要包括超氧阴离子(O2-)、过氧化氢(H2O2)、羟基(OH-)、羟自由基(·OH)等[4]

脑缺血再灌注损伤过程中,ROS增多,发生氧化应激的主要途径如下:

首先,缺血再灌注损伤时,线粒体中部分电子脱离电子传递链,导致氧气的还原反应不充分,致使ROS产生增加[5]

其次,缺血再灌注过程可激活黄嘌呤氧化酶系统、还原型烟酰胺腺嘌呤二核苷酸磷酸(NADPH)氧化酶系统及一氧化氮合酶(NOS)系统,促使ROS产生[6];同时,脑缺血再灌注损伤过程可激活中性粒细胞发生呼吸暴发,产生大量的ROS[7]

最后,在脑缺血阶段,抗氧化物生成减少,机体清除氧自由基的能力下降致使ROS在体内堆积。研究表明,过量的ROS可诱导脑组织中的细胞膜及细胞器膜中的脂质成分发生过氧化[8],诱导DNA、RNA、多糖等大分子交联,使其失去活性[9],从而损伤内皮细胞导致血脑屏障破坏,促进兴奋性氨基酸释放[10],加重细胞死亡。

1.2 炎症反应

炎症反应是脑缺血再灌注损伤的重要因素之一。脑组织发生缺血时,坏死细胞可释放大量腺苷三磷酸(ATP)、高迁移率组蛋白 1(HMGB1)和热休克蛋白60(HSP60)等损伤相关分子模式(DAMPs)[11],并迅速激活神经元、小胶质细胞、脑血管内皮细胞、星形胶质细胞等表面的炎性受体,或通过髓样分化初级反应基因88(MyD88)使核因子-κB(NF-κB)和激活蛋白-1(AP-1)触发促炎因子基因的表达,促使炎症反应发生[12]

缺血再灌注期间,脑组织恢复部分或全部血供,血液中的中性粒细胞在趋化因子的作用下进入脑组织,释放ROS及金属蛋白酶,促进细胞死亡。同时,各类淋巴细胞,如CD8+T细胞、NK细胞,也会进入脑组织,产生白细胞介素(IL)等促炎介质,进一步加重炎症反应[13]

1.3 钙超载

脑组织发生缺血再灌注损伤时,有氧代谢减少,无氧代谢增加,ATP生成减少且耗竭加速,一方面导致各种电压依赖性离子通道发生紊乱,使细胞膜去极化,引起K+外流、Na+和Ca2+内流,造成细胞内钙超载[14];另一方面,ATP减少也会抑制活性 Ca2+外流,限制内质网 (ER)对钙的再摄取,同样引起钙超载[15]

钙超载可通过以下途径加重细胞损伤:

(1)激活磷脂酶C和磷脂酶A2,磷脂酶C可破坏生物膜,磷脂酶A2可使花生四烯酸生成增多,K+通道开放,细胞膜超极化,细胞外谷氨酸增多,谷氨酸受体被激活,引发神经元急性水肿;

(2)促进5-羟色胺、弹性蛋白酶等的释放,引起脑血管痉挛,加重脑缺血缺氧;

(3)进入线粒体影响呼吸链,致使大量ROS产生,加重细胞损伤;

(4)激活NOS及钙依赖蛋白酶,生成大量ROS,加重细胞损伤。

1.4 NO损伤

NO作为神经组织中广泛存在的一种化学物质,在脑缺血再灌注损伤过程中是一把双刃剑[16]。在脑组织中,L-精氨酸与氧气在NOS的作用下生成NO。缺血再灌注损伤发生后,脑组织中的NO生成增加,适量的NO可扩张血管,改善局部脑组织血供,减轻脑缺血再灌注损伤[17]

然而,过量的NO可通过多种机制加重脑缺血再灌注损伤:

(1)NO可通过S-亚硝基化调节丝裂原活化蛋白激酶(mitogen-activated protein kinases,MAPK)信号通路,从而诱导细胞凋亡的发生[17]

(2)NO可与ROS反应生成具有强氧化性的过氧亚硝酸盐,该物质穿透力强,可介导蛋白质酪氨酸硝基化、脂质过氧化、线粒体功能障碍以及DNA断裂,从而加重脑损伤[17-18]

1.5 兴奋性氨基酸毒性作用

兴奋性氨基酸是指具有2个羧基和1个氨基的酸性游离氨基酸,是中枢神经系统的兴奋性神经递质,包括谷氨酸和天冬氨酸。其中,谷氨酸是中枢神经系统含量最高、分布最广、作用最强的兴奋性神经递质,是神经元和神经胶质细胞缺血后诱导兴奋毒性的主要贡献者[19]

在急性缺血过程中,神经元中的谷氨酸向细胞外释放,形成细胞外高浓度谷氨酸环境,而此时细胞外谷氨酸转运蛋白1(EAAT1)和EAAT2的表达迅速下降,使得胞外谷氨酸无法清除和代谢,造成谷氨酸在细胞外堆积[20]

缺血再灌注过程中,脑组织血流得以恢复,神经元中的谷氨酸释放减少,但无法快速恢复EAAT1和EAAT2的表达,故短期内无法改变外高内低的谷氨酸环境[21]

过量的谷氨酸一方面与其受体结合,激活细胞膜Na+-K+-ATP酶,导致大量 Na+和Cl-内流,引起神经元急性水肿;另一方面使细胞外Ca2+内流增加,加重钙超载,致使兴奋神经元释放有毒物质,如ROS等,进一步加重细胞死亡[22]

2 MSCs对脑缺血再灌注损伤的保护作用

MSCs是一种多能干细胞,存在于骨髓、肌肉、脂肪等组织器官,具有较强的自我更新和多谱系分化能力、强大的旁分泌能力及良好的免疫相容性[23]。目前,MSCs已被应用于心力衰竭、胃肠道疾病、皮肤烧伤等多种疾病的治疗[24]

由于神经细胞具有不可再生性,许多脑损伤过程不可逆。尽管脑卒中、外伤性休克、心脏骤停后脑缺血再灌注损伤的治疗方案得以不断完善,但仍需进一步探索及创新[25]。近年来,随着对MSCs研究的不断深入,其对脑缺血再灌注损伤的保护作用值得期待[26-29]

2.1 通过直接分化能力发挥保护作用

强大的分化能力是MSCs保护脑缺血再灌注损伤的主要机制之一。研究表明,MSCs具有分化为神经元的能力。移植入体内的MSCs可迁移至损伤区域,并分化为相应的靶细胞[30-31]

Zhao等[32]研究表明,在大鼠脑卒中模型中,移植到皮层的骨髓MSCs可迁移至损伤区域,能够在宿主的大脑中存活并分化为成熟的神经元,从而改善脑缺血再灌注损伤。可见,MSCs的分化能力是其保护脑缺血再灌注损伤的重要因素。

2.2 通过诱导神经发生及血管生成发挥保护作用

研究表明,MSCs可迁移至中枢神经系统,归巢于缺血区域,通过旁分泌的方式在脑组织中释放血管生成生长因子和神经营养因子,包括血管生成素、肝细胞生长因子(HGF)、脑源性神经营养因子(BDNF)、成纤维细胞生长因子-2(FGF-2)、胰岛素样生长因子-1(IGF-1)、中性粒细胞活化蛋白-2(NAP-2)和血管内皮生长因子[30,33]等,诱导神经发生及血管生成,激活内源性神经恢复过程,从而有助于脑缺血再灌注损伤的治疗[34-36]。Jeong等[37]研究表明,骨髓来源的MSCs可增强内源性神经发生及保护神经细胞免于凋亡,在脑缺血再灌注损伤中表现出一定的治疗潜力。

2.3 通过减少氧化应激发挥保护作用

MSCs可抑制ROS的产生从而减少脑缺血再灌注损伤后的氧化应激。一方面,MSCs主要作用于细胞内线粒体,介导脑缺血再灌注损伤后ROS的生成减少,从而减轻氧化应激损伤。具体表现为MSCs将自身线粒体通过膜通道转移给受损细胞,使其继续进行有氧呼吸及生成ATP,减少ROS的生成[19]。同时,MSCs还可通过减轻线粒体功能障碍而减少氧化应激。

Liu等[38]研究表明,嗅黏膜MSCs可上调UbiA异戊烯基转移酶结构域1(UBIAD1)进而减轻线粒体功能障碍,增强其抗氧化能力,对脑缺血再灌注损伤发挥保护作用。此外,Cao等[39]研究发现,人骨髓来源的MSCs可通过抑制NADPH氧化酶的表达,进而减少氧化应激。可见,MSCs可通过多种方式减少脑缺血再灌注损伤后的氧化应激,进而对脑组织发挥保护作用。

2.4 通过减少炎症反应发挥保护作用

研究表明,将MSCs移植体内后,可通过多种方式调节免疫细胞、释放多种细胞因子以调节脑缺血再灌注损伤区域的炎症反应。主要机制包括抑制NK细胞、B细胞以及T细胞的增殖,释放转化生长因子β(TGF-β)、前列腺素E2、HGF及IL-10等[40]

Huang等[41]研究表明,将MSCs与曾经受氧和葡萄糖剥夺的神经N17细胞共培养可恢复神经N17细胞的长期增殖,降低其凋亡,同时还可降低肿瘤坏死因子α(TNF-α)水平,从而减轻炎症反应。Yoo等[42]研究发现,MSCs通过降低单核细胞化学引诱蛋白-1(MCP-1)的上调以及CD68免疫细胞分泌TGF-β,进而减少缺血性大鼠脑组织的炎症反应。

Redondo-Castro等[43]研究表明,IL-1α可促进MSCs启动抗炎机制,减少小鼠脑缺血再灌注损伤模型中TNF-α和IL-6的分泌,进而减轻炎症反应。尚羽等[44]研究表明,MSCs可通过抑制TLR4/NF-κB通路抑制脑缺血再灌注损伤后的炎症反应,从而发挥保护作用。

此外,有研究指出,在心肺复苏后全脑缺血再灌注损伤模型中,MSCs可上调M2巨噬细胞的表达,从而减轻炎症反应,对脑损伤发挥保护作用[45]

2.5 通过影响钙超载发挥保护作用

目前,关于MSCs通过影响钙超载对脑缺血再灌注损伤神经元发挥保护作用的相关研究较少。正常情况下,大脑组织中高尔基体常驻分泌途径Ca2+-ATP酶(SPCA)高度表达,主要负责运输Ca2+,而发生脑缺血再灌注损伤时,SPCA的表达明显下降,从而加重钙超载[46]

He等[47]研究发现,MSCs可拯救高尔基体并上调SPCA,从而缓解钙超载现象,对脑缺血再灌注损发挥保护作用。

此外,Turovsky等[48]研究表明,MSCs外囊泡的分泌可减轻缺血模型中的钙超载,从而对神经元发挥保护作用。

3 小结与展望

综上,MSCs可通过直接分化替代神经元以及影响脑缺血再灌注损伤的病理生理过程而发挥保护作用。然而,关于MSCs与脑缺血再灌注损伤的机制仍未完全明确,且目前研究发现铁死亡、铜死亡等亦是脑缺血再灌注损伤的重要机制之一。

故未来的研究方向可着眼于以下方面:第一,更全面地探索MSCs与脑缺血再灌注损伤的其他病理生理机制(如铁死亡、铜死亡、NO、兴奋性氨基酸毒性作用等)之间的关系;第二,MSCs在心肺复苏后全脑缺血再灌注损伤中的作用。

参考文献

[1]Yuan Q, Yuan Y, Zheng Y, et al. Anti-cerebral ischemia reperfusion injury of polysaccharides: A review of the mechanisms[J]. Biomed Pharmacother, 2021, 137:111303.

[2]中华医学会急诊医学分会复苏学组, 中国医药教育协会急诊专业委员会, 成人心脏骤停后综合征诊断和治疗中国急诊专家共识组. 成人心脏骤停后综合征诊断和治疗中国急诊专家共识[J]. 中国急救医学, 2021, 41:578-587.

[3]Yang B,Chen Y,Shi J. Reactive Oxygen Species (ROS)-Based Nanomedicine[J]. Chem Rev,2019,119: 4881-4985.

[4]Dryden M. Reactive oxygen species: a novel antimicrobial[J]. Int J Antimicrob Agents,2018,51: 299-303.

[5]Sanderson TH,Reynolds CA,Kumar R,et al. Molecular mechanisms of ischemia-reperfusion injury in brain: pivotal role of the mitochondrial membrane potential in reactive oxygen species generation[J]. Mol Neurobiol,2013,47:9-23.

[6]Wu MY,Yiang GT,Liao WT,et al. Current Mechanistic Concepts in Ischemia and Reperfusion Injury[J]. Cell Physiol Biochem,2018,46: 1650-1667.

[7]侯昆,戴海龙,肖志成.脑缺血再灌注损伤研究进展[J].中国心血管病研究,2016,14: 10-14.

[8]Mukherjee A,Sarkar S,Jana S,et al. Neuro-protective role of nanocapsulated curcumin against cerebral ischemia-reperfusion induced oxidative injury[J]. Brain Res,2019,1704:164-173.

[9]Li S,Jiang D,Rosenkrans ZT,et al. Aptamer-Conjugated Framework Nucleic Acids for the Repair of Cerebral Ischemia-Reperfusion Injury[J]. Nano Lett,2019,19: 7334-7341.

[10]Wang Y,Luo J,Li SY. Nano-Curcumin Simultaneously Protects the Blood-Brain Barrier and Reduces M1 Microglial Activation During Cerebral Ischemia-Reperfusion Injury[J].ACS Appl Mater Interfaces,2019,11: 3763-3770.

[11]Gülke E,Gelderblom M,Magnus T. Danger signals in stroke and their role on microglia activation after ischemia[J]. Ther Adv Neurol Disord,2018,11:1756286418774254.

[12]Gesuete R,Kohama SG,Stenzel-Poore MP. Toll-like receptors and ischemic brain injury[J]. J Neuropathol Exp Neurol,2014,73: 378-386.

[13]Jin R,Yang G,Li G. Inflammatory mechanisms in ischemic stroke: role of inflammatory cells[J]. J Leukoc Biol,2010,87: 779-789.

[14]Sinning C,Westermann D,Clemmensen P. Oxidative stress in ischemia and reperfusion: current concepts,novel ideas and future perspectives[J]. Biomark Med,2017,11: 11031-11040.

[15]Kalogeris T,Baines CP,Krenz M,et al. Cell biology of ischemia/reperfusion injury[J]. Int Rev Cell Mol Biol,2012,298:229-317.

[16]郎丰山,黄云霞,薛云,等.脑缺血再灌注损伤病理生理机制研究进展[J].食品与药品,2018,20: 312-316.

[17]Wang Y,Hong F,Yang S. Roles of Nitric Oxide in Brain Ischemia and Reperfusion[J]. Int J Mol Sci,2022,23:4243.

[18]Ferrer-Sueta G,Campolo N,Trujillo M,et al. Bioche-mistry of Peroxynitrite and Protein Tyrosine Nitration[J]. Chem Rev,2018,118: 1338-1408.

[19]Mahrouf-Yorgov M, Augeul L, Da Silva CC,et al. Mesenchymal stem cells sense mitochondria released from damaged cells as danger signals to activate their rescue properties[J]. Cell Death Differ,2017,24: 1224-1238.

[20]You J,Feng L,Xin M,et al. Cerebral Ischemic Postconditioning Plays a Neuroprotective Role through Regulation of Central and Peripheral Glutamate[J]. Biomed Res Int,2018,2018:6316059.

[21]Fang Y,Jiang D,Wang Y,et al. Neuroprotection of rhGLP-1 in diabetic rats with cerebral ischemia/reperfusion injury via regulation of oxidative stress,EAAT2,and apoptosis[J]. Drug Dev Res,2018,79: 249-259.

[22]Amantea D,Bagetta G. Excitatory and inhibitory amino acid neurotransmitters in stroke: from neurotoxicity to ischemic tolerance[J]. Curr Opin Pharmacol,2017,35:111-119.

[23]Ding DC,Shyu WC,Lin SZ. Mesenchymal stem cells[J]. Cell Transplant,2011,20:5-14.

[24]Galipeau J,Sensébé L. Mesenchymal Stromal Cells: Clinical Challenges and Therapeutic Opportunities[J]. Cell Stem Cell,2018,22: 824-833.

[25]Hoang DM,Pham PT,Bach TQ,et al. Stem cell-based therapy for human diseases[J]. Signal Transduct Target Ther,2022,7: 272.

[26]Salehi MS,Pandamooz S,Safari A,et al. Epidermal neural crest stem cell transplantation as a promising therapeutic strategy for ischemic stroke[J]. CNS Neurosci Ther,2020,26: 670-681.

[27]Levy ML,Crawford JR,Dib N,et al. Phase I/II Study of Safety and Preliminary Efficacy of Intravenous Allogeneic Mesenchymal Stem Cells in Chronic Stroke[J].Stroke,2019,50: 2835-2841.

[28]Andrzejwska A,Dabrowska S,Lukomska B,et al. Mesenchymal Stem Cells for Neurological Disorders[J]. Adv Sci (Weinh),2021,8: 2002944.

[29]Abbasi-Kangevari M,Ghamari SH,Safaeinejad F,et al. Potential Therapeutic Features of Human Amniotic Mesenchymal Stem Cells in Multiple Sclerosis: Immunomodula-tion,Inflammation Suppression,Angiogenesis Promotion,Oxidative Stress Inhibition,Neurogenesis Induction,MMPs Regulation,and Remyelination Stimulation[J]. Front Immunol,2019,10:238.

[30]Wang F,Tang H,Zhu J,et al. Transplanting Mesen-chymal Stem Cells for Treatment of Ischemic Stroke[J]. Cell Transplant,2018,27: 1825-1834.

[31]Dabrowska S,Andrzejewska A,Lukomska B,et al. Neuroinflammation as a target for treatment of stroke using mesenchymal stem cells and extracellular vesicles[J].J Neuroinflammation,2019,16: 178.

[32]Zhao LR,Duan WM,Reyes M,et al. Human bone marrow stem cells exhibit neural phenotypes and ameliorate neurological deficits after grafting into the ischemic brain of rats[J]. Exp Neurol,2002,174: 11-20.

[33]Bronckaers A, Hilkens P, Martens W, et al. Mesenchymal stem/stromal cells as a pharmacological and therapeutic approach to accelerate angiogenesis[J]. Pharmacol Ther, 2014, 143: 181-196.

[34]Boese AC, Le QE, Pham D, et al. Neural stem cell therapy for subacute and chronic ischemic stroke[J]. Stem Cell Res Ther, 2018, 9: 154.

[35]Bagheri-Mohammadi S. Protective effects of mesenchymal stem cells on ischemic brain injury: therapeutic perspectives of regenerative medicine[J]. Cell Tissue Bank,2021,22: 249-262.

[36]Beneedek A, Cernica D, Mester A, et al. Modern Concepts in Regenerative Therapy for Ischemic Stroke: From Stem Cells for Promoting Angiogenesis to 3D-Bioprinted Scaffolds Customized via Carotid Shear Stress Analysis[J]. Int J Mol Sci, 2019, 20:2574.

[37]Jeong CH,Kim SM,Lim JY,et al. Mesenchymal stem cells expressing brain-derived neurotrophic factor enhance endogenous neurogenesis in an ischemic stroke model[J]. Biomed Res Int,2014,2014:129145.

[38]Liu J,Huang Y,He J,et al. Olfactory Mucosa Mesenchymal Stem Cells Ameliorate Cerebral Ischemic/Reperfusion Injury Through Modulation of UBIAD1 Expression[J]. Front Cell Neurosci,2020,14:580206.

[39]Cao D,Qiao H,He D,et al. Mesenchymal stem cells inhibited the inflammation and oxidative stress in LPS-activated microglial cells through AMPK pathway [J]. J Neural Transm (Vienna),2019,126: 1589-1597.

[40]Cunningham CJ,Redondo-Castro E,Allan SM. The therapeutic potential of the mesenchymal stem cell secretome in ischaemic stroke[J]. J Cereb Blood Flow Metab,2018,38: 1276-1292.

[41]Huang P,Gebhart N,Richelson E,et al. Mechanism of mesenchymal stem cell-induced neuron recovery and anti-inflammation[J]. Cytotherapy,2014,16: 1336-1344.

[42]Yoo SW,Chang DY,Lee HS,et al. Immune following suppression mesenchymal stem cell transplantation in the ischemic brain is mediated by TGF-β[J]. Neurobiol Dis,2013,58:249-257.

[43]Redondo-Castro E,Cunningham C,Miller J,et al. Interleukin-1 primes human mesenchymal stem cells towards an anti-inflammatory and pro-trophic phenotype in vitro[J]. Stem Cell Res Ther,2017,8: 79.

[44]尚羽,李康睿,叶民,等. 骨髓间充质干细胞对大鼠脑缺血再灌注损伤后神经元凋亡及炎症的影响[J]. 遵义医科大学学报,2022,45: 289-295.

[45]Yu Y,Wang D,Li H,et al. Mesenchymal stem cells derived from induced pluripotent stem cells play a key role in immunomodulation during cardiopulmonary resuscitation[J]. Brain Res,2019,1720:146293.

[46]Li LH,Tian XR,Jiang Z,et al. The Golgi Apparatus: Panel Point of Cytosolic Ca(2+) Regulation[J]. Neurosignals,2013,21: 272-284.

[47]He J,Liu J,Huang Y,et al. Olfactory Mucosa Mesenchymal Stem Cells Alleviate Cerebral Ischemia/Reperfusion Injury Via Golgi Apparatus Secretory Pathway Ca2+ -ATPase Isoform1[J]. Front Cell Dev Biol,2020,8:586541.

[48]Turovsky EA,Golovicheva VV,Varlamvoa EG,et al. Mesenchymal stromal cell-derived extracellular vesicles afford neuroprotection by modulating PI3K/AKT pathway and calcium oscillations[J]. Int J Biol Sci,2022,18: 5345-5368.

版权声明:
本网站所有内容来源注明为“梅斯医学”或“MedSci原创”的文字、图片和音视频资料,版权均属于梅斯医学所有。非经授权,任何媒体、网站或个人不得转载,授权转载时须注明来源为“梅斯医学”。其它来源的文章系转载文章,或“梅斯号”自媒体发布的文章,仅系出于传递更多信息之目的,本站仅负责审核内容合规,其内容不代表本站立场,本站不负责内容的准确性和版权。如果存在侵权、或不希望被转载的媒体或个人可与我们联系,我们将立即进行删除处理。
在此留言
评论区 (0)
#插入话题

相关资讯

Biomed Mater:多孔锂掺杂羟基磷灰石支架接种缺氧预处理的骨髓间充质干细胞可有效促进骨再生

羟基磷灰石(HA)是骨组织工程中常用的生物材料,但纯HA缺乏骨诱导。在本研究中,我们制备了掺锂HA(Li-HA)的支架并评估了接种缺氧预处理的骨髓间充质干细胞(BMMSCs)后,Li-HA支架的增强骨生成作用。结果显示,1.5%Li-HA在体外获得最佳的细胞增殖活性。体内研究中,Li-HA/BMSCs增强新骨形成,减少GSK-3β,增加β-连环蛋白,但血管生成效应没有明显改变。然而,当接种的BMM

Stem Cells Int:羟基磷灰石纳米粒的体外摄取及其对人骨髓间充质干细胞成骨分化的影响

在过去的几十年中,基于羟基磷灰石纳米颗粒(HA NP)已广泛应用于生物医学领域。然而,HANPs的生物相容性受暴露剂量、粒度和与细胞接触的方式的影响。本研究旨在评估不同大小的HANPs对人骨髓间充质干细胞(hMSCs)成骨的影响。研究人员合成了三种不同大小的HANPs(分别为~50,~100和~150nm),以研究其细胞毒性,细胞摄取和对hMSCs成骨分化的影响。结果显示,三种HANPs对hMSC

J Cell Biochem:含bFGF基因的慢病毒转染可促进骨髓间充质干细胞的增殖和成骨分化

本研究旨在探究含bFGF基因的慢病毒转染对骨髓基质细胞(BMSCs)生物学特性的影响。通过密度梯度离心和粘附筛选获得BMSCs。用慢病毒载体将bFGF基因转染BMSCs,根据转染条件分为bFGF转染组、空病毒组和未转染组。转染后,观察三组细胞的形态,bFGF mRNA和蛋白的表达,细胞增殖,细胞周期和碱性磷酸酶(ALP)活性。通过密度梯度离心和粘附筛选成功获得高密度BMSC。 结果显示,bFGF转

异基因骨髓间充质干细胞(MSCs)抑制角膜移植的免疫排斥

VISICORT IB期临床试验将首次测试骨髓间充质干细胞(MSCs)疗法对高危角膜移植患者的安全性和可行性。

J Orthop Surg Res:关节内注射骨髓浓缩液VS.脂肪来源的干细胞治疗膝关节骨性关节炎

在骨关节炎中,退行性关节病是由关节软骨和下层骨的破坏造成的。随着再生医学的进展,许多患者开始接受关节内正生物治疗,以治疗膝关节骨性关节炎(KOA)和软骨疾病。

Int J Med Sci:褪黑素通过AMPK激活减轻氧化应激抑制人骨髓间充质干细胞的成骨作用

氧化应激通过增加骨吸收或减少骨形成在衰老相关的骨质疏松症的发病机理中起重要作用。褪黑激素可通过抗氧化、抗炎和保骨作用发挥有益作用,或可预防氧化应激抑制的骨生成。然而,褪黑激素拯救氧化应激抑制人间充质干细胞(MSCs)成骨的特定机制尚未完全阐明。因此,本研究探究了褪黑激素对AMPK的激活是否调节人MSCs中氧化应激和成骨分化之间的拮抗串扰。 结果显示,褪黑素通过激活AMPK和上调FOXO3a和